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Stochastic Processes V. Issa & E. Jacob

TD12 : Harmonic Functions and Miscellaneous

Exercise 1 — Area of planar Brownian motion.
Let B be a planar Brownian motion. let £2 denote the Lebesgue measure on R%2. We are
going to show that almost surely {B;,t € [0, 1]} is £L2-negligible.

(1) Let A;, Ay C R? be measurable sets, show that if £L2(A;), £?(A3) > 0 then
L£2{z e R*: L2(A; N (z + Ay)) > 0} > 0.

(2) Let X; = L*{By,t € I}, by bounding P(X; > a), show that for every bounded
interval I C R, the expectation of X is finite.
(3) Show that L2{B;,t € [0,1]} N L?{By,t € [2,3]} = 0 almsot surely.
(4) Let Bllf = Bt+2 — BQ + Bl and
R(z)=L*B,: te[0,1]}n{z+ B, : te[0,1]}.

Show that for almost all z € R?, we have P(R(z) =0) = 1.
(5) Deduce from the previous question that almost surely,

Lz €R?: R(z) >0} =0.

(6) Deduce from the previous questions that almost surely {B; : ¢ € [0,1]} is £*-
negligible.

Exercise 2 — Point transience of Brownian motion.
Let d > 2 and B a Brownian motion on R?. We wish to show that for every y € R?, we
have
P(y € {B,t € (0,1]}) = 0.
(1) Show that the result for d = 2 implies the result for all d > 2. In the rest of the
exercise we assume that d = 2.

(2) Show for every x € R? and almost all y € RY, P, (y € {B;,t € (0,1]}) =

(3) Deduce that y € R? and almost all z € R? P,(y € {B;,t € (0,1]}) = 0

(4) Conclude. (Hint: you may consider Ppr.))

Exercise 3 — Counterezample.
Let U = {zx € R?,0 < |z] < 1} C R? be the punctured unit disk and let ¢ : OU — R be
the function defined by ¢(x) = 1,49. Consider the Laplace equation

Au=0 onU
u=q on OU.

(1) Show that the Brownian expectation does not define a continuous solution of the

equation above.
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(2) Show that in fact this Laplace equation doesn’t have any solution. (Hint: any
continuous solution is of the form u(x) = g(|z|))

Exercise 4 — Gambler’s ruin in several dimensions.
Let r, R € (0,00) such that r < R and d > 1, consider the annulus

U={zecR,r<|z| <R}

Let B be a R%-valued Brownian motion, we let T, (resp. Tr) denote the hitting time of
the ball of radius r (resp. R) centered at 0 by B. The hitting time of OU by B is given by
Toy =T, N Tgr. Recall the definition of the Laplacian operator,

=1

(1) Let ¢,C € Rand let ¢ : U — R be the function defined by ¢(z) = c1j3=r+C1jgz/=r-
Give a solution of the Laplace equation

Au=0on U
u = ¢ on OU.

(2) Using u compute P, (7, < Tg).

(3) for |z| > r, compute P(T, < 00).

(4) Assume that d = 2, Show that almost surely, for every z € R?* and & > 0 there
exists an increasing sequence (t,), € (R;)Y such that ¢, — oo and |B(t,) —z| < .

(5) Assume that d > 3, show that Py-almost surely lim; o |B;| = oo. (Hint: Consider
the events A, = { for every t > T}, |B;| > n}.)

Exercise 5 — Law of iterated logarithms for random walks.

Let B be a Brownian motion, define 1(t) = 1/2tloglog .

(1) Let (7},), be a sequence of stopping times such that 7,, — oo almost surely and
T,/Tni1 — 1 almost surely. For every g > 4, we define

Dy ={B(¢") = B(¢" ") = ¢(¢" = ¢" )}

o ={  min B() - B - Vi

kStquJA

In what follows we admit the existence of ¢ > 0 such that P(Dy) > ¢/(klogk).
(a) Show that lim sup i((;:)) < 1 almost surely.
(b) Show that P(lim sup Doy, N Qo) = 1.

(c¢) Show that almost surely for infinitely many & > 1, we have
1 2
. k - = o k
qulsl%Btzw(q)(l . ﬁ) V4
(Hint: You may use the inequality ¥ (¢* — ¢®=1) > (¢*)(1 — 1/q).)
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(d) By considering the sequence n(k) = inf{n > 1,T,, > ¢*}, show that almost
surely,
B(T,)

lim sup =1

(2) Define a sequence of stopping times recursively by Ty = 0 and

Tn+1 - lnf{t > Tna |B(t) - B(Tn)’ = 1}’

show that T, /n — 1 almost surely.
(3) Let (X&) be a sequence of independent uniform random variables in {—1,1} and

Sp = p_; Xi. Show that,

limsup —— = 1.

n—-+00 ¢(n)
Exercise 6 — Quadratic and absolute variation.
Let ¢ > 0, a partition ¢ of [0,¢] is a finite sequence 0 = t, < t; < ... < t, = t, given
a partition we define its length #t = n and its mesh-size |t| = maxj<;<u |t; — t;—1|. Let
f:]0,t] = R be a measurable function, we define the total variation of f on [0,¢] by

#t
TVi(f) =limsup > [ f(t:) = f(tim1)].

=0 |§\SE i=1

Where supy, <, should be understood as the supremum over all partitions of [0,¢] with
mesh-size < e. Similarly, we define the quadratic variation of f on [0, t] by

#t

QVi(f) = (limsup Y "(f(t:) — f(tim1))™

e—0 |ﬁ|§5 i—1

(1) Let (t™); be a sequence of partitions with [t*)| — 0. For every k > 1, let

#t(*)
_ N 2
Xe= ) (Bw —Bw )™

=1

(a) Assume that the sequence (Xj), converges in L?(£2) to some constant random
variable X, show that X =t almost surely.
(b) Show that (Xj), converges in L?(Q) toward the constant random variable
taking only the value t.
(¢) Show that if (¢®)), is such that Y72, Zﬁ(lk) (tgk) — tgli)l)z < 00, then (Xj)k
converges almost surely.
(d) What can you say about the random variable QV;(B) ?
(2) Show that almost surely the trajectories of the Brownian do not have bounded
total variation, that is P(TV,(B) = oo) = 1. (Hint: what can you say about the
quadratic variation of a continuous function with finite total variation 7).
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Exercise 7 — A weaker condition for the first Wald’s lemma.
We wish to show that when T is a stopping time with E[T"/?] < oo, Wald’s lemma still
applies and E[Br| =0
(1) Define 7 := min{k : 4* > T'}. Set M (t) := max(oy B and X}, := M (4*)—252. Show
that (Xj) is a supermartingale for the filtration (Fy)g, and that 7 is a stopping
time.
(2) Show that E[M(47)] < oo and conclude.
(3) Show that when T is the hitting time of 1, we have E[T] < oo for all @ < 1/2 but
E[Br| # 0. This proves that the exponent 1/2 is optimal.



