TD11: Donsker's invariance principle and Arcsine Laws

Exercise 1 — Another arcsine law.

Let B be a Brownian motion on [0, 1].

- (1) Let $[a_1, b_1]$ and $[a_2, b_2]$ be two non overlapping intervals $(b_1 \le a_2)$. Show that almost surely the maximum value of B on $[a_1, b_1]$ and $[a_2, b_2]$ are different.
- (2) Using the previous question, show the following,
 - (a) The global maximum of B on [0,1] is attained at a unique point $M \in [0,1]$.
 - (b) Every local maximum of B is a strict local maximum.
 - (c) The set of points where the local maxima are attained is dense and countable.
- (3) Show that for every $s \in [0,1]$, $\mathbb{P}(M \le s) = \frac{2}{\pi} \arcsin(\sqrt{s})$.

Exercise 2 — Yet another arcsine law.

Let $(X_k)_{k\geq 1}$ be a sequence of iid standard random variables, let $(S_n)_{n\geq 0}$ be the random walk associated to $(X_k)_{k\geq 1}$. Let

$$N_n = \max\{k \in \{1, \dots, n\}, S_k S_{k-1} \le 0\}$$

be the last sign change of (S_k) before time n. Given $f \in \mathcal{C}([0,1])$, let

$$G(f) = \sup\{t \in [0,1], f(t) = 0\}$$

denote its last zero. Let U denote the set of functions $f \in \mathcal{C}([0,1])$ such that $f(1) \neq 0$ and for every $t \in [0,1]$, if f(t) = 0 then for every $\varepsilon > 0$, the function f takes positive and negative values in $[t - \varepsilon, t + \varepsilon]$.

- (1) Recall how to define $S_n^* \in \mathcal{C}([0,1])$ using the trajectories of the random walk $(S_n)_n$.
- (2) Let B be a Brownian motion, show that G(B) is arcsine distributed. (*Hint*: show that $G(B) \stackrel{(d)}{=} M$ where M is the random variable of exercise 1.)
- (3) Show that for every $f \in U$, the function G is continuous at f.
- (4) Show that almost surely G is continuous at B. (Hint: use Exercise 1 of TD11 and Exercise 4 of TD9)
- (5) Show that N_n/n converges in law to N, where $\mathbb{P}(N \leq x) = \frac{2}{\pi} \arcsin(\sqrt{x})$.

Exercise 3 — Maximum value of a random walk.

Let $(X_k)_{k\geq 1}$ be a sequence of iid standard random variables, let $(S_n)_{n\geq 0}$ be the random walk associated to $(X_k)_{k\geq 1}$. Define,

$$M_N = \sup\{S_n, 0 \le n \le N\}.$$

Compute the limit in law of M_N/\sqrt{N} as $N \to \infty$.