TD9 : Regularity of Brownian Trajectories and Stopping Times

Exercise 1 - Warm-up.

Let B be a Brownian motion, using the fact that B is a Gaussian process, show that B has the simple Markov property. That is for every $s \ge 0$ show that $(B_{t+s} - B_s)_{t\ge 0}$ is a Brownian motion independent from $(B_t)_{t\le s}$.

Exercise 2 — Counter-example. Let B be a Brownian motion and let

$$T = \inf\{t \ge 0, B_t = \max_{s \in [0,1]} B_s\},\$$

be the first hitting time by B of the maximum of B on [0, 1], is T a stopping time ?

Exercise 3 — Hölder regularity of Brownian trajectories.

Let B be a Brownian motion, recall from Exercise 4 of TD8 that the process $X = (tB_{1/t})_{t\geq 0}$ is also a Brownian motion.

(1) Show that $\lim_{t\to\infty} \frac{B_t}{t} = 0$ a.s. and that for every $\varepsilon > 0$,

$$\lim_{t \to 0} \frac{B_t}{t^{1/2-\varepsilon}} = 0 \text{ and } \lim_{t \to \infty} \frac{B_t}{t^{1/2+\varepsilon}} = 0 \text{ a.s.}.$$

- (2) Let (ξ_n) be a sequence of independent and identically distributed centered random variables with variance 1,
 - (a) For every $K \in \mathbb{R}$, show that $\mathbb{P}(\limsup_{n \to \infty} \{\sum_{k=1}^{n} \xi_k \ge K\sqrt{n}\}) > 0$.
 - (b) Show that almost surely

$$\limsup_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \xi_k = +\infty.$$

(3) Deduce from the previous question that,

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{t}} = +\infty \text{ and } \liminf_{t \to \infty} \frac{B_t}{\sqrt{t}} = -\infty,$$
$$\limsup_{t \to 0} \frac{B_t}{\sqrt{t}} = +\infty \text{ and } \liminf_{t \to 0} \frac{B_t}{\sqrt{t}} = -\infty.$$

(4) Recall that given a function $f : \mathbb{R}_+ \to \mathbb{R}$ and $t \ge 0$, we say that f is locally α -Hölder at t if there exists a neighborhood V of t in \mathbb{R}_+ and a constant $c \ge 0$ such that for every $s, s' \in V$, we have

$$|f(s) - f(s')| \le c|s - s'|^{\alpha}$$

(a) Show that almost surely B is not locally 1/2-Hölder at 0.

- (b) For every $t \ge 0$, define $L_t = \limsup_{s \to 0} \left| \frac{B_{t+s} B_t}{\sqrt{s}} \right|$ and $A = \{t \in \mathbb{R}_+, L_t < +\infty\}$. Show that almost surely the set A is negligible with respect to the Lebesgue measure.
- (c) Show that the set of points at which B is locally 1/2-Hölder is almost surely negligible with respect to the Lesbesgue measure.

Exercise 4 — The set of zeros of B is perfect.

Recall that for every $S \subset \mathbb{R}$ we say that $x \in S$ is an isolated point of S if there exists a neighborhood V of x in \mathbb{R} such that $V \cap S = \{x\}$. Let B be a Brownian motion, and

$$Z = \{t \ge 0, B_t = 0\}.$$

- (1) Show that the following events are almost sure,
 - (a) Z is infinite and is a closed set.
 - (b) Z has Lebesgue measure 0.
 - (c) Z has no isolated points.
- (2) (*) Make the notion of random closed set rigorous by defining a σ -algebra on the set of closed subsets of \mathbb{R}_+ .

Exercise 5 — Another counter-example.

Let $X_t = AB_t$ where B is a Brownian motion started from 1 and A an independent balanced Bernoulli.

- (1) Show that X is a Markov process and give its transition kernel.
- (2) Show that it does not verify the strong Markov property.

Exercise 6 — Brownian motion on the circle.

Define a Brownian motion on the circle \mathbb{S}^1 by setting $X_t = e^{iB_t}$ for $t \ge 0$. What is the distribution of the last point hit by X in \mathbb{S}^1 ?