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TD7 : Gaussian vectors, conditionning

Exercise 1 — Gaussian vectors.
Let X be a random vector in Rn. We say that it is a Gaussian vector if for every t ∈ Rn,
the random variable ⟨t,X⟩ ∈ R has a Gaussian distribution (with possibly null variance).

(1) Recall the parameters, the characteristic function, and (when it exists) the p.d.f.
of a Gaussian distribution on R.

(2) Show that t 7→ E[⟨t,X⟩] is a linear form, and (s, t) 7→ Cov[⟨s,X⟩, ⟨t,X⟩] is a positive
semi-definite bilinear form. Let them be represented by ⟨·,m⟩ and ⟨·,Σ·⟩. Give an
interpretation of mi and Σij for every i, j ∈ {1, . . . , n}.

(3) Let X be a Gaussian vector, for every t ∈ Rn, compute E[ei⟨t,X⟩]. Briefly explain
why the distribution of X is characterized by the parameters m and Σ.

(4) Let X be a Gaussian vector with parameters (m,Σ) and A be a p×n matrix, show
that AX ∈ Rp is a Gaussian vector, and compute its parameters.

(5) We say that two processes A and B are uncorrelated when for every index t, s,
Cov(At, Bs) = 0. Let V1 and V2 be two subspaces of Rn and X a Gaussian vector.
Show that the σ-algebras σ(⟨t,X⟩, t ∈ V1) and σ(⟨t,X⟩, t ∈ V2) are independent if
and only if (⟨t,X⟩)t∈V1 and (⟨s,X⟩)s∈V2 are uncorrelated.

(6) Build two standard Gaussian variables X and Y that are uncorrelated yet not
independent (they obviously do not form a Gaussian vector !)

(7) Show that the vector (X1, . . . Xn) with X1, . . . , Xn independent standard Gaussian
variables, is Gaussian. Use it to build a Gaussian vector with arbitrary parameters.
Deduce its p.d.f. when it has one.

Exercise 2 — Conditioning and independence.
Let G be a σ-algebra, X ∈ G and Y ⊥⊥ G be two random variables, and f : R2 → R
such that f(X, Y ) ∈ L1. Compute E[f(X, Y ) | G]. Deduce the conditional distribution of
f(X, Y ) given G.

Exercise 3 — Gaussian conditional distribution and Bayesian statistics 101.
Let (X, Y ) be a non-degenerate centered Gaussian vector in R2 with covariance matrix

Σ =

(
σ2
x ρ
ρ σ2

y

)
.

(1) For every y ∈ R, compute the conditional distribution of X given Y = y.
(2) Let θ ∼ N (0, τ 2) and Y1, . . . , Yn i.i.d. ∼ N (0, σ2) random variables, define Xi =

θ + Yi. What is the conditional distribution of θ given X = 1
n

∑n
i=1Xi = x ?

(3) Give an interpretation of the situation discribed in the previous question.
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(4) Compute the limit of the distribution of θ given X = x and give an interpretation
in each of the following cases.
(a) σ → +∞
(b) σ → 0
(c) τ → +∞
(d) τ → 0

(5) (⋆) What about the conditional distribution of θ given (X1, . . . Xn) ?

Exercise 4 — Limit in distribution of Gaussian vectors.
Let (Xn)n≥0 be a sequence of Gaussian variables (Xn)n≥0. Give a necessary and sufficient
condition for convergence in distribution, show that the limit is always Gaussian, and
determine its parameters.
Hint: You can use tightness to show that when (Xn)n≥0 converges in distribution, the
sequence (EXn)n≥0 is bounded.

Exercise 5 — Borel-Kolmogorov paradox.
Let P denote a uniform point in the sphere S2, i.e. for every bounded measurable f ,∫

f(p)PP (dp) =
1

Leb3(BR3(0, 1))

∫
BR3 (0,1)

f

(
p

|p|

)
Leb3(dp).

Denote ϕP ∈ (−π/2, π/2] its latitude and θP ∈ (−π, π] its (almost surely defined) longitude.

(1) Compute the joint distribution of (θP , ϕP ).
(2) Let θP ∈ [0, π) denote a representant of θP modulo π. Compute the conditional

distribution of P given θP .
(3) Compute the conditional distribution of P given ϕP .
(4) Justify that there is only one ”right way” of specializing those answers when com-

puting the conditional distribution of P given θP = 0 and the conditional distribu-
tion of P given ϕP = 0).

(5) What is the paradox ?


