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Exercise 1 — Area of planar Brownian motion.
Let B be a planar Brownian motion. let L2 denote the Lebesgue measure on R2. We are
going to show that almost surely {Bt, t ∈ [0, 1]} is L2-negligible.

(1) Let A1, A2 ⊂ R2 be measurable sets, show that if L2(A1),L2(A2) > 0 then

L2
{
x ∈ R2 : L2(A1 ∩ (x+ A2)) > 0

}
> 0.

If we prove the result for A1, A2 bounded sets, then the result follows since

L2
{
x ∈ R2 : L2(A1 ∩ (x+ A2)) > 0

}
≥ L2

{
x ∈ R2 : L2(AM1 ∩ (x+ AM2 )) > 0

}
,

where AMi = B(0,M) ∩ Ai. In what follows we thus assume that A1 and A2 are
bounded sets. We have∫

R2

L2(A1 ∩ (x+ A2))dx =

∫
R2

∫
R2

A1(y)1x+A2(y)dydx

=

∫
R2

∫
R2

A1(y)1−A2(x− y)dydx

=

∫
R2

∫
R2

A1(y)1−A2(x− y)dxdy

=

∫
R2

A1(y)

(∫
R2

A1(y)1−A2(x− y)dx

)
dy

=

∫
R2

A1(y)L2(A2)

= L2(A1)L2(A2).

Thus, ∫
R2

L2(A1 ∩ (x+ A2))dx = L2(A1)L2(A2) > 0.

By contradiction, if we have L2 {x ∈ R2 : L2(A1 ∩ (x+ A2)) > 0} = 0, then∫
R2

L2(A1 ∩ (x+ A2))dx = 0,

a contradiction!
(2) Let XI = L2{Bt, t ∈ I}, by bounding P(XI > a), show that for every bounded

interval I ⊂ R+, the expectation of XI is finite.
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Since I is bounded it is contained in an interval of the form [0, T ]. When X[0,T ] >
a, the set {Bt, t ≤ T} is not contained in [−

√
a/2,

√
a/2]. Thus, if W denote a 1-

dimensionnal Brownian motion we have

P(XI > a) ≤ 2P(max
t≤T

Wt > a) = 4P(WT > a) ≤ c1e
−c2a.

Thus a 7→ P(XI > a) is integrable on R+ and EXI < +∞.
(3) Show that L2{Bt, t ∈ [0, 1]} ∩ L2{Bt, t ∈ [2, 3]} = 0 almsot surely.

Recall that (B3t)t≥0 and (
√
3Bt)t≥0 have the same law. Hence, EX[0,3] = 3EX[0,1].

In addition, since XI defines a nonnegative random variable, by additivity of the
Lebesgue measure we have,

EX[0,3] ≤ EX[0,1] + EX[1,2] + EX[2,3],

with equality if and only if E[L2{Bt, t ∈ [i, i + 1]} ∩ L2{Bt, t ∈ [j, j + 1]}] = 0 for
i ̸= j. On the other hand, the inequality in the previous display implies that

3EX[0,1] = EX[0,3] ≤ EX[0,1] + EX[1,2] + EX[2,3] ≤ 3EX[0,1].

Thus, we have E[L2{Bt, t ∈ [i, i+ 1]} ∩ L2{Bt, t ∈ [j, j + 1]}] = 0 for i ̸= j
(4) Let B′

t = Bt+2 −B2 +B1 and

R(x) = L2{Bt : t ∈ [0, 1]} ∩ {x+B′
t : t ∈ [0, 1]}.

Show that for almost all x ∈ R2, we have P(R(x) = 0) = 1.
Let Y = B2 −B1, by the Markov property Y is independent of B and B′ and is

a standard normal. It follows from (1) that

0 = E
[
L2{Bt, t ∈ [0, 1]} ∩ L2{Bt, t ∈ [2, 3]}

]
= ER[Y ].

Thus for almost all x ∈ R2, R(x) = 0 almost surely.
(5) Deduce from the previous question that almost surely,

L2{x ∈ R2 : R(x) > 0} = 0.

This is a standard application of the Fubini lemmma,

EL2{x ∈ R2 : R(x) > 0} = E
∫
R2

1R(x)>0dx

=

∫
R2

E1R(x)>0dx

=

∫
R2

P(R(x) > 0)dx

= 0.

Thus the result.
(6) Deduce from the previous questions that almost surely {Bt : t ∈ [0, 1]} is L2-

negligible. From question (1) and the preivous question, we have almost surely
X[0, 1] = 0 or X[2, 3] = 0. Since X[0, 1] and X[2, 3] are independent and follow the
same law we obtain that X[0, 1] = 0 almosy surely, this is the desired result.
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Exercise 2 — Point transience of Brownian motion.
Let d ≥ 2 and B a Brownian motion on Rd. We wish to show that for every y ∈ Rd, we
have

P(y ∈ {Bt, t ∈ (0, 1]}) = 0.

(1) Show that the result for d = 2 implies the result for all d ≥ 2. In the rest of the
exercise we assume that d = 2.

We can project on the first two coordinates. Indeed, If we write Bt = (Bi
t)1≤i≤d,

then B′
t = (B1

t , B
2
t ) is a Brownian motion in R2. We can the observe that for

y = (yi)1≤i≤d ∈ Rd,

P(y ∈ {Bt, t ∈ (0, 1]}) ≤ P((y1, y2) ∈ {B′
t, t ∈ (0, 1]})

and that the probability on the right hand side is 0 when we know that the result
of the exercise for d = 2.

(2) Show for every x ∈ Rd and almost all y ∈ Rd, Px(y ∈ {Bt, t ∈ (0, 1]}) = 0.
Since d = 2, we can use the main result of the previous exercise: L2{Bt, t ∈

[0, 1]} = 0 almsot surely. This is independent of the starting of the starting point
so forall x ∈ R2 we have L2{Bt, t ∈ [0, 1]} = 0 Px-almost surely. By applying
Fubini’s theorem, it follows that∫

R2

P↶(y ∈ {Bt, t ∈ [0, 1]})dy =

∫
R2

Ex 1y∈{Bt, t∈[0,1]}dy

= Ex
∫
R2

1y∈{Bt, t∈[0,1]}dy

= Ex L2{Bt, t ∈ [0, 1]}
= 0.

(3) Deduce that y ∈ R2 and almost all x ∈ R2, Px(y ∈ {Bt, t ∈ (0, 1]}) = 0.
By symmetry of the Brownian motion, we can inverse the role of x and y. Let

y ∈ R2, for almost all x ∈ R2 it holds that

Px(y ∈ {Bt, t ∈ (0, 1]}) = P0(y ∈ {x+Bt, t ∈ (0, 1]})
= P0(y − x ∈ {Bt, t ∈ (0, 1]})
= Py(x ∈ {Bt, t ∈ (0, 1]})
= 0.

(4) Conclude. (Hint: you may consider PN (0,ε))
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In light of the previous question, we have for all y ∈ R2, PN (0,ε)(y ∈ {Bt, t ∈
(0, 1]}) = 0. But then,

P0(y ∈ {Bt, t ∈ (0, 1]}) = lim
ε→0

Px(y ∈ {Bt, t ∈ (ε, 1]})

= lim
ε→0

Ex PN (0,ε)(y ∈ {Bt, t ∈ (0, 1− ε]})

= 0.

Exercise 3 — Counterexample.
Let U = {x ∈ R2, 0 < |x| < 1} ⊂ R2 be the punctured unit disk and let φ : ∂U → R be
the function defined by φ(x) = 1x ̸=0. Consider the Laplace equation{

∆u = 0 on U

u = φ on ∂U.

(1) Show that the Brownian expectation does not define a continuous solution.
Set T = T∂U be the hitting time of the boundary of U and u(x) = Ex[φ(BT )1T<∞].

This does not define a continuous solution to the Laplace equation, because since
the Brownian motion started outside of 0 almost surely does not hit 0, we have
u(0) = 0 and h(x) = 1 for all x ∈ U \ {0}. Hence h is not continuous.

(2) Show that in fact this Laplace equation doesn’t have any solution. (Hint: any
continuous solution is of the form u(x) = g(|x|)) By contradiction, let u be a
continuous solution. For every θ ∈ [0, 2π), let Rθ denote the planar rotation of
angle θ, we start by showing that u◦Rθ = u. The function v = u◦Rθ is continuous,
and we have ∆v = ∆u = 0. In addition, on ∂U , v = φ ◦ Rθ = φ. By uniqueness,
it follows that v = u. In particular since u is invariant by roation, there exists
g : [0, 1] → R such that u(x) = g(|x|). We have,{

g′′(x) + 1
x
g′(x) = 0 on (0, 1)

(g(0), g(1)) = (0, 1).

The solutions of this ODE are of the form x 7→ A+B log(x), and we must have B =
0 and A = 0 to satisfy the condition, g(0) = 0 but then g(1) = 0, a contradiction.

Exercise 4 — Gambler’s ruin in several dimensions.
Let r, R ∈ (0,∞) such that r < R and d ≥ 1, consider the annulus

U = {x ∈ Rd, r < |x| < R}

Let B be a Rd-valued Brownian motion, we let Tr (resp. TR) denote the hitting time of
the ball of radius r (resp. R) centered at 0 by B. The hitting time of ∂U by B is given by
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T∂U = Tr ∧ TR. Recall the definition of the Laplacian operator,

∆u =
d∑
i=1

∂2u

∂2xi

(1) Let c, C ∈ R and let φ : ∂U → R be the function defined by φ(x) = c1|x|=r+C1|x|=R.
Give a solution of the Laplace equation{

∆u = 0 on U

u = φ on ∂U.

The problem is radially symmetric, so we look for solutions in the set of radially
symmetric functions u(x) = v(|x|2), the condition u imposes,{

v′′(y) + d−1
y
v′(y) = 0 on (r, R)

(v(r), v(R)) = (c, C)

Solutions of this equation satisfy v′(x) = Ay1−d, integrating we discover that up to
an additive and a multiplcative constant, we have,

u(x) =

{
|x|2−d if d ̸= 2

log |x| otherwise

(2) Using u compute Px(Tr < TR). Let px = Px(Tr < TR). For every x ∈ U , u(x) =
Ex[u(BT )1T<∞] = Ex[u(B(Tr))1Tr<TR ] + Ex[u(B(TR))1TR<Tr ] = cpx + C(1 − px).
We have,

px =
C − u(x)

C − c

Plugging in the values we have found for u we discover,

Px(Tr < TR) =


R−|x|
R−r when d = 1
logR−log |x|
logR−log r

when d = 2
R2−d−|x|2−d

R2−d−r2−d when d ≥ 3.

(3) for |x| > r, compute P(Tr <∞).
Repeating the argument but with harmonic functions on the complement of the

ball or radius r or simply letting R → ∞ in the previous formula, we obtain

Px(Tr < TR) =

1 when d ≤ 2(
r
|x|

)d−2

when d ≥ 3.

(4) Assume that d = 2, Show that almost surely, for every x ∈ R2 and ε > 0 there
exists an increasing sequence (tn)n ∈ (R+)

N such that tn → ∞ and |B(tn)−x| ≤ ε.
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Fix x ∈ Q2 and ε ∈ (0,∞) ∩Q, we define a sequence of stopping times by,{
τ1 = inf{t ≥ 0, |Bt − x| ≤ ε}
τn+1 = inf{t ≥ τn + 1, |Bt − x| ≤ ε}

By the previous question τ1 is almost surely finite, by induction and applying the
strong Markov property to 1 + τn, we discover that for every n, τn is almost surely
finite. We have built an increasing sequence (τn)n such that almost surely τn → ∞
and |Bτn − x| ≤ ε. Therefore, almost surely, the following holds, for every x ∈ Q2

and ε ∈ (0,∞) ∩ Q there exists an increasing sequence (tn)n ∈ (R+)
N such that

tn → ∞ and |B(tn) − x| ≤ ε. Finally, we can recover the result for x ∈ R2 and
ε > 0 by density.

(5) Assume that d ≥ 3, show that P0-almost surely limt→∞ |Bt| = ∞. (Hint: Consider
the events An = { for every t > Tn3 , |Bt| > n}.)
Consider the events,

An = { for every t > Tn3 , |Bt| > n}.

P0-almost surely Tn3 is finite, so by Markov’s property,

P0(A
c
n) = E0[PB(Tn3 )(Tn <∞))] =

(
1

n2

)d−2

.

By Borel-Cantelli, P0(lim supAn) = 1. That is, almost surely An is realised for
infinitely n, but on this even limt→∞ |Bt| = ∞

Exercise 5 — Law of iterated logarithms for random walks.
Let B be a Brownian motion, define ψ(t) =

√
2t log log t.

(1) Let (Tn)n be a sequence of stopping times such that Tn → ∞ almost surely and
Tn/Tn+1 → 1 almost surely. For every q > 4, we define

Dk =
{
B(qk)−B(qk−1) ≥ ψ(qk − qk−1)

}
Ωk =

{
min

qk≤t≤qk+1
B(t)−B(qk)−

√
qk
}

In what follows we admit the existence of c > 0 such that P(Dk) ≥ c/(k log k).

(a) Show that lim sup B(Tn)
ψ(Tn)

≤ 1 almost surely.

(b) Show that P(lim supD2k ∩ Ω2k) = 1.
(c) Show that almost surely for infinitely many k ≥ 1, we have

min
qk≤t≤qk+1

Bt ≥ ψ(qk)

(
1− 1

q
− 2

√
q

)
−
√
qk

(Hint: You may use the inequality ψ(qk − qk−1) ≥ ψ(qk)(1− 1/q).)
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(d) By considering the sequence n(k) = inf{n ≥ 1, Tn ≥ qk}, show that almost
surely,

lim sup
n→∞

B(Tn)

ψ(Tn)
= 1.

(2) Define a sequence of stopping times recursively by T0 = 0 and

Tn+1 = inf{t > Tn, |B(t)−B(Tn)| = 1},
show that Tn/n→ 1 almost surely.

(3) Let (Xk)k be a sequence of independent uniform random variables in {−1, 1} and
Sn =

∑n
k=1Xk. Show that,

lim sup
n→∞

Sn
ψ(n)

= 1.

You can find a detailled correction of this exercise (and much more!) by looking at the
proof of Theorem 5.4 in the book Brownian Motion by P. Morters and Y. Peres which you
can find here.

Exercise 6 — Quadratic and absolute variation.
Let t ≥ 0, a partition t of [0, t] is a finite sequence 0 = t0 ≤ t1 ≤ . . . ≤ tn = t, given
a partition we define its length #t = n and its mesh-size |t| = max1≤i≤#t |ti − ti−1|. Let
f : [0, t] → R be a measurable function, we define the total variation of f on [0, t] by

TVt(f) = lim
ϵ→0

sup
|t|≤ϵ

#t∑
i=1

|f(ti)− f(ti−1)|.

Where sup|t|≤ϵ should be understood as the supremum over all partitions of [0, t] with
mesh-size ≤ ϵ. Similarly, we define the quadratic variation of f on [0, t] by

QVt(f) = (lim
ϵ→0

sup
|t|≤ϵ

#t∑
i=1

(f(ti)− f(ti−1))
2.

(1) Let (t(k))k be a sequence of partitions with |t(k)| → 0. For every k ≥ 1, let

Xk =

#t(k)∑
i=1

(B
t
(k)
i

−B
t
(k)
i−1

)2.

(a) Assume that the sequence (Xk)k converges in L
2(Ω) to some constant random

variable X, show that X = t almost surely. Assume that Xk
L2

→ X, then
|EXk − EX| ≤ E[|Xk −X|2]1/2 → 0. We have,

EXk =

#t(k)∑
i=1

E(B
t
(k)
i

−B
t
(k)
i−1

)2 =

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1) = t.

Therefore X = EX = limEXk = t.

https://www.mi.uni-koeln.de/~moerters/book/book.pdf
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(b) Show that (Xk)k converges in L2(Ω) toward the constant random variable
taking only the value t.
Let Z be a standard Gaussian random variable and let c = Var(Z2 − 1). Let
Ak = Xk − t, (Ak)k is a sequence of centered random variables. By indepen-
dence of the increments of B we have,

EA2
k = Var(Ak)

=

#t(k)∑
i=1

Var
(
(B

t
(k)
i

−B
t
(k)
i−1

)2 − (t
(k)
i − t

(k)
i−1)

)

=

#t(k)∑
i=1

(t
(k)
i − t

(k)
i−1)

2c

≤ ct|t(k)|.

So EA2
k → 0 and the result is proven.

(c) Show that if (t(k))k is such that
∑∞

k=1

∑#t(k)

j=1 (t
(k)
i − t

(k)
i−1)

2 < ∞, then (Xk)k
converges almost surely. According to the computation of the previous question

EA2
k ≤ c

∑#t(k)

i=1 (t
(k)
i −t(k)i−1)

2, so by assumption
∑

k EA2
k <∞. For every ε > 0,

P(|Ak| ≥ ε) ≤ ε−2 EA2
k, so

∑
k P(|Ak| ≥ ε) < ∞. Therefore, by the Borel-

Cantelli lemma, we have P(lim sup{|Ak| ≥ ε}) = 0 and

P(∃N ∈ N, ∀n ≥ N, |An| ≤ ε) = 1.

A countable intersection of almost sure events is almost sure, it follows that,

P(∀ε ∈ Q∗
+, ∃N ∈ N, ∀n ≥ N |An| ≤ ε) = 1.

This exactly means Ak → 0 almost surely.
(d) What can you say about the random variable QVt(B) ? We have,

lim
ϵ→0

sup
|t|≤ϵ

#t∑
i=1

(Bti −Bti−1
)2 ≥ lim

k→∞

#t(k)∑
i=1

(B
t
(k)
i

−B
t
(k)
i−1

)2 = t.

Therefore, the quadratic variation of the trajectories of the Brownian motion
is almost surely ≥ t.

(2) Show that almost surely the trajectories of the Brownian do not have bounded
total variation, that is P(TVt(B) = ∞) = 1. (Hint : what can you say about the
quadratic variation of a continuous function with finite total variation ?).

Let f : [0, t] → R be a continuous function, assume that TVt(f) < +∞ and let us
show that QVt(f) = 0. Let α > 0, there exists ε > 0 such that for every t1, t2 ≤ t,
if |t1− t2| ≤ ε then |f(t1)− f(t2)| ≤ α. Let t be a partition with mesh size ≤ ε and
length n, we have

n∑
i=1

|f(ti)− f(ti−1)|2 ≤ sup
1≤j≤

|f(tj)− f(tj−1)|
n∑
i=1

|f(ti)− f(ti−1)| ≤ α|
n∑
i=1

|f(ti)− f(ti−1)|.
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Taking the sup over all such partitions and letting the meshsize go to 0, we obtain
QVt(f) ≤ αTVt(f). This is true for all α > 0, so QVt(f) = 0. Since the trajectories
of B are continuous and QVt(B) ≥ t > 0, we must have TVt(B) = +∞.

Exercise 7 — A weaker condition for the first Wald’s lemma.
We wish to show that when T is a stopping time with E[T 1/2] < ∞, Wald’s lemma still
applies and E[BT ] = 0

(1) Define τ := min{k : 4k ≥ T}. SetM(t) := max[0,t]B andXk :=M(4k)−2k+2. Show
that (Xk) is a supermartingale for the filtration (F4k)k, and that τ is a stopping
time. Define τ := min{k : 4k ≥ T}. Set M(t) := max[0,t]B and

E[Xk+1 −Xk | F4k ] = E[M(4k+1)−M(4k) | F4k ]− 4× 2k.

Since we know that almost surely M(4k+1) − M(4k) ≤ |B4k+1 − B4k | which is
independent of F4k and distributed like |B4k+1−4k |, then

E[Xk+1 −Xk | F4k ] ≤ E[|B4k+1−4k |]− 4× 2k =
√
3× 4k E[|B1|]− 4× 2k.

A simple application of Cauchy-Schwarz or Jensen gives E[|B1|] ≤
√

E[|B1|2] = 1,
and the expectation above is bounded by 0. If we consider τ , we have the equality
of events {τ ≤ k} = {4k ≥ T}, which belongs to F4k . So τ is a (F4k)k-stopping
time.

(2) Show that E[M(4τ )] < ∞ and conclude. Let n ≥ 0. E[M(4τ ∧ 4n)] = E[Xτ∧n] +
E[2τ∧n+2] ≤ E[X0]+8E[T 1/2], where we have used the supermartingale property at
the bounded stopping time τ ∧ n and the fact that 4τ ≤ 4T . By monotone conver-
gence M(4τ ) is integrable so max[0,T ]B ≤ M(4τ ) too. By reversal, −min[0,T ]B is
integrable also, and this provides an integrable random variable that bounds Bt∧T
for every t. So the optional stopping theorem applies and E[BT ] = 0.

(3) Show that when T is the hitting time of 1, then E[Tα] <∞ for all α < 1/2, yielding
that our result is in some sense optimal. The law of T is the law of 1/|B1|2. If
α < 1/2, then tα × t−3/2e−1/(2t) is o(e−1/(2t)) (so it’s integrable) near 0, and is
O(t−1−(1/2−α)) near infinity, so is integrable too. In this case, E[Tα] < ∞. For
α = 1/2, the function is no longer integrable at +∞.


