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TD11 : Donsker’s Invariance Principle and Arcsine Laws

Exercise 1 — Another arcsine law.
Let B be a Brownian motion on [0, 1].

(1) Let [a1, b1] and [a2, b2] be two non overlapping intervals (b1 ≤ a2). Show that almost
surely the maximum value of B on [a1, b1] and [a2, b2] are different.
We start by arguing that we can choose b1 < a2. By Markov’s property, (Bt+a2 −

Ba2)t≥0 is a Brownian motion so, almost surely, it takes positive values close to a2.
in other word, almost surely a2 is not a maximum of B on [a2, b1] and there exists
n such that the maximum on [a2, b2] coincides with the maximum on [a2 +1/n, b2].
We let mi denote the maximum on [ai, bi]. The event m1 = m2 is the same as the
event,

Ba2 −Bb1 = m1 −Bb1 − (m2 −Ba2).

In addition, by the Markov property m1 −Bb1 is independent of Ba2 −Bb1 and for
the same reason m2 − Ba2 is also independent of Ba2 − Bb1 . Conditioning, with
respect to m1 −Bb1 and m2 −Ba2 in the previous display we obtain that the right-
hand side is constant and the left-hand side has a continuous law, a contradiction.

(a) Show that the global maximum of B on [0, 1] is attained at a unique point
M ∈ [0, 1].
According to the previous question, the following holds,

P(∀q ∈ Q ∩ [0, 1], the maximum of B on [0, q] and [q, 1] are distinct) = 0.

By contradiction, assume that B attains is attained at two distinct points
t1 < t2, then there exists q ∈ Q∩ [0, 1] such that t1 < q < t2 and the maximum
values of B on [0, q] and [1, q] are equal. Therefore, the even ”the global
maximum of B is attained at at least two distinct points” is included in the
complement of an almost sure event, so the desired result is proven.

(b) Every local maximum of B is a strict local maximum. Almost surely, any pair
of disjoint interval with rational endpoints have different maximum. If B has
a non-strict maximum, we can build two such intervals with same maximum.

(c) The set of points where the local maxima are attained is dense and countable.
Since every local maximum is strict, the set of maximizer is discrete, hence
countable. In addition, almost surely the maximum over any non-degenerate
interval with rational endpoints is not attained at an endpoint, so every such
interval contains a local maximum and the set of maximizers is dense.

(2) Show that for every s ∈ [0, 1], P(M ≤ s) = 2
π
arcsin(

√
s).
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Let s ∈ [0, 1], we have

P(M ≤ s) = P(max
[0,s]

Bu > max
[s,1]

Bu)

= P(max
[0,s]

Bu −Bs > max
[s,1]

Bu −Bs)

= P(M1(s) > M2(s)),

where M1(s) is the maximum on [0, s] of the Brownian motion B1
u = Bs−u−Bs and

M2(1−s) is the maximum on [s, 1] of the Brownian motion B2
u = Bs+u−Bs. By the

reflection principle, M1(s) is distributed like |B1(s)| and M2(1− s) like |B2(1− s)|.
So,

P(M ≤ s) = P(|B1(s)| ≥ |B2(s)) = P(
|Z2|√
Z2

1 + Z2
2

≤
√
s),

where Z1 and Z2 are independent standard normal random variables. If we write
the point (Z1, Z2) in polar coordinates, its angle with the origin θ is uniformly

distrusted in [0, 2π] and |Z2|√
Z2
1+Z2

2

= | sin(θ)| which finishes the proof.

Exercise 2 — Yet another arcsine law.
Let (Xk)k≥1 be a sequence of iid standard random variables, let (Sn)n≥0 be the random
walk associated to (Xk)k≥1. Let

Nn = max{k ∈ {1, . . . , n}, SkSk−1 ≤ 0}
be the last sign change of (Sk) before time n. Given f ∈ C([0, 1]), let

G(f) = sup{t ∈ [0, 1], f(t) = 0}
denote its last zero. Let U denote the set of functions f ∈ C([0, 1]) such that f(1) ̸= 0
and for every t ∈ [0, 1], if f(t) = 0 then for every ε > 0, the function f takes positive and
negative values in [t− ε, t+ ε].

(1) Recall how to define S∗
n ∈ C([0, 1]) using the trajectory (Sk)1≤k≤n of the random

walk. Given a Brownian motion B, what is the law of G(B)?
According to the arcsine law, G(B) is arcsine distributed. Given a trajectory

of S on {1, . . . , n} we can define a continuous function on [0, 1] by considering the
piecewise linear function whose value at k

n
is Sk√

n
. Those functions are the function

appearing in Donsker’s invariance principle.
(2) Show that for every f ∈ U , the function G is continuous at f .

Let f ∈ U , and let (fn)n be a sequence of functions that converge to f uniformly
on [0, 1]. Let tn = G(fn) ∈ [0, 1] and let t be a limit point of some subsequence
(tφ(n))n, let us show that t = G(f). We have fn(tn) = 0, so letting n → ∞ along a
subsequence, we obtain f(t) = 0 and t ≤ G(f). By contradiction, assume t < G(f)
then there exists s ∈ (t, 1) such that f(s) = 0. Since f ∈ U , for every ε > 0, there
exists s+ε , s

−
ε ∈ [s− ε, s+ ε] such that f(s+ε ) > 0 and f(s+ε ) < 0. Let us fix ε > 0 os

that s− ε > t, for n large enough fφ(n)(s
+
ε ) > 0 and fφ(n)(s

+
ε ) > 0, so fφ(n) vanishes
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in [s− ε, s+ ε]. Thus, tφ(n) = G(fφ(n)) ≥ s− ε > t, letting n → ∞ we discover that
t ≥ s− ε < t, a contradiction !

(3) Show that almost surely G is continuous at B. (Hint: Exercise 4 of TD9 and
Exercise 1 of TD11 )

Let us show tht almost surely B ∈ U . It is clear that almost surely B1 ̸= 0.
Let us show that almost surely B changes sign in every neighborhood of its zeros.
Assume this is not the case, then there exists t a zero of B, such that B does not
change sign in a neighborhood of t, then t is a local extremum of B, by Question
2.(b) of exercise 2 in TD11 it is a strict local extremum. This means that t would
be an isolated zero of B. But according to Exercise 4 of TD9, almost surely the
set of zeros of B has no isolated points. Therefore, B ∈ U almost surely and G is
continuous at B almost surely.

(4) Show that Nn/n converges in law to N , where P(N ≤ x) = 2
π
arcsin(x).

To apply Donsker’s invariance principle we only need continuity of the functional
on U , so we can apply it to G here. It is clear that |Nn/n − G(S∗

n)| ≤ 1/n, so for
any bounded continuous function h : R → R, by dominated convergence we have.

lim
n→∞

E
(
h

(
Nn

n

)
− h(G(S∗

n))

)
= 0.

In addition, by Donsker’s invariance principle, G(S∗
n) → G(B) so by dominated

convergence Eh(G(S∗
n)) → Eh(G(B)). In conclusion, Nn

n
converges in law to G(B)

which is arcsine distributed.

Exercise 3 — Maximum value of a random walk.
Let (Xk)k≥1 be a sequence of iid standard random variables, let (Sn)n≥0 be the random
walk associated to (Xk)k≥1. Define,

MN = sup{Sn, 0 ≤ n ≤ N}.
Compute the limit in law of MN/

√
N as N → ∞.

Let g ∈ Cb(R), define G : C([0, 1]) → R by G(f) = g(max f). The function G is bounded
and continuous with respect to the topology of uniform convergence. Let S∗

n ∈ C([0, 1]) be
a rescaled and linearly interpolated version of Sn, we have maxS∗

N = max0≤n≤N
Sn√
N

= MN√
N
.

Therefore, E g(MN√
N
) = EG(S∗

N) and by Donsker’s invariance principle,

E g

(
MN√
N

)
→ EG(B) = E g(max

0≤t≤1
Bt).

Finally, according to the reflection principle max0≤t≤1Bt
(d)
= |B1|. So MN/

√
N converges

in law to the absolute value of a standard normal.


