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TD10 : Continuous Time Martingales

Exercise 1 — Hitting time of a line.

Let a > 0 and b € R, define T' = inf{t > 0, B, = at + b}. Compute P(T < o0).

We can restrict to b > 0 using the intermediate value theorem. Let X, = e20B:—20%t he the
exponential martingale for A\ = 2a. For every t < T, X; < €?® so the stopped martingale
X7 is bounded by a constant. By the optionnal stopping theorem,

1= IE[)(T/\n] - E[XT]-{TSH}] + ]E[Xw]-{T>n}]

By monotone convergence lim,, o E[X71{r<py] = E[X71{pco}]. To treat the second term,
recall that lim;_,. % = 0 almost surely, So 0 < X, 1(75,) < e2at(Gt—a) _, 0 almost surely.
In addition 0 < X, 1175,y < e?® 5o by dominated convergence, lim,,_,q E[X,1{75n] = 0.
So letting n — oo, we obtain 1 = E[X717.4], but Xy = 2%, Thus, P(T' < c0) = e 2%,

Exercise 2 — All hypotheses matter.
Let B be a Brownian motion and S, 7T two stopping times such that S < T < oo almost
surely.

(1) Show that if E[S] < oo and E[T] < oo, then E[B%] < E[B2].

According to Wald’s second lemma, if 7" is a stopping time with finite first mo-
ment, we have E[B2] = E[T]. Here it is clear that E[S] < E[T], so the result
follows.

(2) Find two stopping times S and T" with E[S] < oo, such that E[B2] > E[B2Z]. Let
S =3, and let

T = lﬂf{t 2 3, Bt - O},

Be the first hitting time of 0 after time 3. Clearly S and 7" are stopping times and
E[S] = 3 < oo and by definition S < T, E[B%] = 1 and E[B%] = 0. Let us show
that P(T' < 00) = 1, we have

{T = oo} = {Vt > 3,B, # 0}
- {W >0, Byy3 # O}
= {vt>0,B" + —Bjs}.
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Given a process X and a € R we denote T,(X) the first hitting of a by X. For
every a € R, we have T,(B) < oo almost surely. It follows,

P(T < OO) =K ]-{T<oo}]

[
— E[]E[1{T<OO}IB:;H
= E[P(T_p,(B®) < o0|B;)]
= E[1]
=1

Exercise 3 — Brownian gambler’s ruin.
For any ¢ € R, we let

T.:=inf{t >0 : By =c}

be the hitting time of ¢ by (By)i>o. Let a,b > 0, we let T := T, A T}, be the hitting time
Of {—CL, b} by (Bt)tZO‘

(1)

What is the law of Br? The random variable By is supported on —a,b. Let
p=P(Br = —a) = P(T = T_,). The stopped process BT is bounded by the
maximum value between a and b. Applying the optional stopping time theorem,
we obtain,

0= E[By] = E[Br| = p(—a) + (1 — p)b.

Solving for p, we obtain p = b%@
Compute E[T]. Consider the quadratic martingale X; = B? — ¢, by the martingale

property applied to M, we have
E[(BY)*] = E[T At].

The process BT is bounded by the maximum of @ and b. Since T is almost surely fi-
nite, by dominated convergence we have lim;_,, E(B})? = E B2 = ab By monotone
convergence, E[T' A t] — E[T] so E[T] = ab.

Exercise 4 — Ezponential martingale and computations.

Let B be a Brownian motion, we recall that for every A € R, the process (e

ABt—tA2/2>t>0 is

a martingale, called the exponential martingale. We let for any a > 0,

(1)

Toy :=inf{t >0 : B, >a}

For every a > 0 and p > 0, compute the Laplace transform E[e #1at]. (Hint: use

the exponential martingale). To lighten notations, we write 7" in place of T, in

this question. Let X, = e*B—*/2 the stopped martingale X7 is bounded by e
2

The optional stopping time theorem implies 1 = E[X7] = e* E[e~ = T]. So for every

>0, Ee #T = ¢=av2u,



(2) Let (BY, B?) be a two-dimensional Brownian motion. For every a > 0, we let

C, = B
T4

(a) Show that for any b > 0, the process O = (Cjyy — Ch)aso is independent
of Fr,, and has the same law as (C,),>0. Deduce that (C;)a>0 is a Markov

process and give its transition kernel. We have, C")(B) = C (B(Tb(i))). So, by
the Markov property for B, the result follows. The process C' is a Markov
process with kernel,

Pz, A) = P(C, € A).

1)y, 5@ : )
(b) Show that (e’\(Bt1 +iB,” ))i>0 is a complex martingale, and deduce the charac-
teristic function of C, for a > 0 fixed. Let M denote the process in question,
Since B has independent and stationary increments, we have

E[M; 4| F] = Elexp(A((BY, — B{") + (B2, — B&))) exp(MBLY +iB*))| F

= Elexp(\((BY, — BY) + (B, — BP))|F]exp(A\(B" +iB))
:1 XA{t.

Applying the optional stopping theorem to M and Ta(_lg (the stopped martingale
is bounded by e, we obtain

1 =E[M, ] = Elexp(A(a +iC,))]

1)
Ta7L

Therefore,

]E[ei)\Ca] _ 67)«1.
Finally, note that —C, @ C, so applying the above formula (only valid for
A > 0) we obtain,

E[ei/\(]a] _ e—\)\|a'

(¢) Compute the distribution of C,. We recognize the Laplace transform of the
Cauchy Law with parameter a, whose density is,

1 1

Exercise 5 — Fxponential Martingale.
Show that if (X;)i>0 is a process such that for any A € R, (e*X*=%2*/2),; is a continuous
martingale started from 1, then (X;):>o has the law of a Brownian motion.
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Assume that for every A € R M()\) = e*Xt""*/2 defines a continuous martingale started

from 1. We are going to show that X is Brownian motion using Lévy’s characterization.
We have,

X, =log My(1) +t/2,
so X has continuous trajectories and Xy = 0. In addition, for every, s < ¢ we have
E[eMXe—X)] = E [E [GA(XﬁXS) ]:SH
_E []E [eAXt—tA2/2€—(>\XS—s>\2/2)|]_—f]} o(t=9)X%/2
= E [E[M,(\)|F,] My(\)71] etV
_ E[MSMg—l]e(t—s)vm

_ =22

This means that X; — X, is a centered Gaussian random variable with variance t — s.
Furthermore, a similar computation yields for u < s <t

E[M(\) M (N M,(1)] = E

This means, that
E[e/\(thXs)+uXu] _ E[e)\(thXS)] ]E[e‘uX“].

In conclusion X starts from 0, has continuous trajectories, has centered normal independent
increments with variance t — s, thus X is a standard Brownian motion.

Exercise 6 — Martingales derived from B.
Let B be a Brownian motion. For n > 0, we define the n-th Hermite polynomial H,, by,
2

d" .
Hn($) = (_1)n€x2/2%677.

We equip the vector space R[X] of real polynomials with the scalar product,

22

P.Q= /R P)Q()

(1) Show that (H,)n>o is an orthogonal family in R[X].
This is a classical result which follows from a few integrations by part.

2
(2) Show that for every A\, b € R, M=% = ano H',;Eb) A"

dx.




Define f(\, z) = e 2~ we have
oanf,z) .,
fonn) =3 BTy

n!
n>0
In addition,

dn 1 1
A=0
Therefore,

Z Hn(‘x) A = e%f()\’ .’,L') _ €§€_%(>\_m)2 _ e)w—g‘
n:

n>0

(3) Show that for every n > 0, the process (t"/2H,, (%))tgo is a martingale.
This can be seen as a consequence of the fact that the exponential martingale is
a martingale and this property is preserved when differentiating with respect to \.



