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Exercise 1 — Hitting time of a line.
Let a ≥ 0 and b ∈ R, define T = inf{t ≥ 0, Bt = at+ b}. Compute P(T < ∞).

We can restrict to b > 0 using the intermediate value theorem. Let Xt = e2aBt−2a2t be the
exponential martingale for λ = 2a. For every t ≤ T , Xt ≤ e2ab, so the stopped martingale
XT is bounded by a constant. By the optionnal stopping theorem,

1 = E[XT∧n] = E[XT1{T≤n}] + E[Xn1{T>n}]

By monotone convergence limn→∞ E[XT1{T≤n}] = E[XT1{T<∞}]. To treat the second term,

recall that limt→∞
Bt

t
= 0 almost surely, So 0 ≤ Xn1{T>n} ≤ e2at(

Bt
t
−a) → 0 almost surely.

In addition 0 ≤ Xn1{T>n} ≤ e2ab, so by dominated convergence, limn→∞ E[Xn1{T>n}] = 0.
So letting n → ∞, we obtain 1 = E[XT1T<∞], but XT = e2ab. Thus, P(T < ∞) = e−2ab.

Exercise 2 — All hypotheses matter.
Let B be a Brownian motion and S, T two stopping times such that S ≤ T < ∞ almost
surely.

(1) Show that if E[S] < ∞ and E[T ] < ∞, then E[B2
S] ≤ E[B2

T ].
According to Wald’s second lemma, if T is a stopping time with finite first mo-

ment, we have E[B2
T ] = E[T ]. Here it is clear that E[S] ≤ E[T ], so the result

follows.
(2) Find two stopping times S and T with E[S] < ∞, such that E[B2

S] > E[B2
T ]. Let

S = 3, and let

T = inf{t ≥ 3, Bt = 0},

Be the first hitting time of 0 after time 3. Clearly S and T are stopping times and
E[S] = 3 < ∞ and by definition S ≤ T , E[B2

3 ] = 1 and E[B2
T ] = 0. Let us show

that P(T < ∞) = 1, we have

{T = ∞} = {∀t ≥ 3, Bt ̸= 0}
= {∀t ≥ 0, Bt+3 ̸= 0}

= {∀t ≥ 0, B
(3)
t ̸= −B3}.
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Given a process X and a ∈ R we denote Ta(X) the first hitting of a by X. For
every a ∈ R, we have Ta(B) < ∞ almost surely. It follows,

P(T < ∞) = E[1{T<∞}]

= E[E[1{T<∞}|B3]]

= E[P(T−B3(B
(3)) < ∞|B3)]

= E[1]
= 1.

Exercise 3 — Brownian gambler’s ruin.
For any c ∈ R, we let

Tc := inf{t ≥ 0 : Bt = c}
be the hitting time of c by (Bt)t≥0. Let a, b > 0, we let T := T−a ∧ Tb be the hitting time
of {−a, b} by (Bt)t≥0.

(1) What is the law of BT ? The random variable BT is supported on −a, b. Let
p = P(BT = −a) = P(T = T−a). The stopped process BT is bounded by the
maximum value between a and b. Applying the optional stopping time theorem,
we obtain,

0 = E[B0] = E[BT ] = p(−a) + (1− p)b.

Solving for p, we obtain p = b
b+a

.

(2) Compute E[T ]. Consider the quadratic martingale Xt = B2
t − t, by the martingale

property applied to MT
t , we have

E[(BT
t )

2] = E[T ∧ t].

The process BT is bounded by the maximum of a and b. Since T is almost surely fi-
nite, by dominated convergence we have limt→∞ E(BT

t )
2 = EB2

T = ab By monotone
convergence, E[T ∧ t] → E[T ] so E[T ] = ab.

Exercise 4 — Exponential martingale and computations.
Let B be a Brownian motion, we recall that for every λ ∈ R, the process (eλBt−tλ2/2)t≥0 is
a martingale, called the exponential martingale. We let for any a > 0,

Ta+ := inf{t ≥ 0 : Bt > a}

(1) For every a > 0 and µ ≥ 0, compute the Laplace transform E[e−µTa+ ]. (Hint: use
the exponential martingale). To lighten notations, we write T in place of Ta+ in

this question. Let Xt = eλBt−tλ2/2, the stopped martingale XT is bounded by eλa.

The optional stopping time theorem implies 1 = E[XT ] = eλa E[e−λ2

2
T ]. So for every

µ ≥ 0, E e−µT = e−a
√
2µ.
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(2) Let (B(1), B(2)) be a two-dimensional Brownian motion. For every a ≥ 0, we let

Ca := B
(2)

T
(1)

a+

.

(a) Show that for any b > 0, the process C(b) = (Cb+a − Cb)a≥0 is independent
of FTb+

and has the same law as (Ca)a≥0. Deduce that (Ca)a≥0 is a Markov

process and give its transition kernel. We have, C(b)(B) = C(B(T
(1)
b+ )). So, by

the Markov property for B, the result follows. The process C is a Markov
process with kernel,

Pt(x,A) = P(Ct ∈ A).

(b) Show that (eλ(B
(1)
t +iB

(2)
t ))t≥0 is a complex martingale, and deduce the charac-

teristic function of Ca for a > 0 fixed. Let M denote the process in question,
Since B has independent and stationary increments, we have

E[Mt+s|Ft] = E[exp(λ((B(1)
t+s −B

(1)
t ) + i(B

(2)
t+s −B

(2)
t ))) exp(λ(B

(1)
t + iB

(2)
t ))|Ft]

= E[exp(λ((B(1)
t+s −B

(1)
t ) + i(B

(2)
t+s −B

(2)
t )))|Ft] exp(λ(B

(1)
t + iB

(2)
t ))

= 1×Mt.

Applying the optional stopping theorem toM and T
(1)
a+ (the stopped martingale

is bounded by eλa, we obtain

1 = E[M
T

(1)
a+
] = E[exp(λ(a+ iCa))]

Therefore,

E[eiλCa ] = e−λa.

Finally, note that −Ca
(d)
= Ca so applying the above formula (only valid for

λ ≥ 0) we obtain,

E[eiλCa ] = e−|λ|a.

(c) Compute the distribution of Ca. We recognize the Laplace transform of the
Cauchy Law with parameter a, whose density is,

f(x) =
1

πa

1

1 +
(
x
a

)2 .
Exercise 5 — Exponential Martingale.
Show that if (Xt)t≥0 is a process such that for any λ ∈ R, (eλXt−tλ2/2)t≥0 is a continuous
martingale started from 1, then (Xt)t≥0 has the law of a Brownian motion.
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Assume that for every λ ∈ R Mt(λ) = eλXt−tλ2/2 defines a continuous martingale started
from 1. We are going to show that X is Brownian motion using Lévy’s characterization.
We have,

Xt = logMt(1) + t/2,

so X has continuous trajectories and X0 = 0. In addition, for every, s < t we have

E[eλ(Xt−Xs)] = E
[
E
[
eλ(Xt−Xs)|Fs

]]
= E

[
E
[
eλXt−tλ2/2e−(λXs−sλ2/2)|F∫

]]
e(t−s)λ2/2

= E
[
E [Mt(λ)|Fs]Ms(λ)

−1
]
e(t−s)λ2/2

= E[MsM
−1
s ]e(t−s)λ2/2

= e(t−s)λ2/2.

This means that Xt − Xs is a centered Gaussian random variable with variance t − s.
Furthermore, a similar computation yields for u < s < t

E[Mt(λ)M
−1
s (λ)Mu(µ)] = E[E[Mt(λ)M

−1
s (λ)|Fu]Mu(µ)]

= E[E[E[Mt(λ)M
−1
s (λ)|Fs]|Fu]Mu(µ)]

= E[E[E[Mt(λ)|Fs]M
−1
s (λ)|Fu]Mu(µ)]

= E[E[Ms(λ)M
−1
s (λ)|Fu]Mu(µ)]

= E[Mu(µ)].

This means, that

E[eλ(Xt−Xs)+µXu ] = E[eλ(Xt−Xs)]E[eµXu ].

In conclusionX starts from 0, has continuous trajectories, has centered normal independent
increments with variance t− s, thus X is a standard Brownian motion.

Exercise 6 — Martingales derived from B.
Let B be a Brownian motion. For n ≥ 0, we define the n-th Hermite polynomial Hn by,

Hn(x) = (−1)nex
2/2 dn

dxn
e−

x2

2 .

We equip the vector space R[X] of real polynomials with the scalar product,

P ·Q =

∫
R
P (x)Q(x)

e−
x2

2

√
2π

dx.

(1) Show that (Hn)n≥0 is an orthogonal family in R[X].
This is a classical result which follows from a few integrations by part.

(2) Show that for every λ, b ∈ R, eλb−λ2

2 =
∑

n≥0
Hn(b)
n!

λn.
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Define f(λ, x) = e−
1
2
(λ−x)2 , we have

f(λ, x) =
∑
n≥0

∂n
λf(0, x)

n!
λn.

In addition,

∂n
λf(0, x) =

dn

dλn

∣∣∣∣∣
λ=0

e−
1
2
(λ−x)2 = (−1)n

dn

dxn
e−

1
2
x2

= e−
x2

2 Hn(x).

Therefore, ∑
n≥0

Hn(x)

n!
λn = e

x2

2 f(λ, x) = e
x2

2 e−
1
2
(λ−x)2 = eλx−

λ2

2 .

(3) Show that for every n ≥ 0, the process (tn/2Hn

(
Bt√
t

)
)t≥0 is a martingale.

This can be seen as a consequence of the fact that the exponential martingale is
a martingale and this property is preserved when differentiating with respect to λ.


