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TD9 : Stopping Times

Exercise 1 — Warm-up.
Let B be a Brownian motion, using the fact that B is a Gaussian process, show that B
has the simple Markov property. That is for every s ≥ 0 show that (Bt+s − Bs)t≥0 is a
Brownian motion independent from (Bt)t≤s.
It is easly checked that (Bt+s−Bs)t≥0 is a Gaussian process started from 0 with continuous
trajectories and with covariance of the form min{t1, t2}. Hence, (Bt+s−Bs)t≥0 is a Brownian
motion. Furthermore, the covariance between (Bt+s − Bs)t≥0 and (Bt)0≤≤s is 0, so those
two Gaussian processes are independent.

Exercise 2 — Counter-example.
Let B be a Brownian motion and let

T = inf{t ≥ 0, Bt = max
s∈[0,1]

Bs},

be the first hitting time by B of the maximum of B on [0, 1], is T a stopping time ?
At an intuitive level we see that to have T = t, we need to know B will not exceed the
value Bt on [1, t]. Hence, we can guess that T is not a stopping time; let us prove this
rigorously. By contradiction assume that T is a stopping time, then B̃t = BT+t − BT is a
Brownian motion. By definition of T , B̃ is non-positive on [0, 1 − T ]. If T < 1 we reach
a contradiction, as we’ve just built a non-trivial interval on which B has constant sign.
Otherwise, we have T = 1 a.s., this is also not possible as we would have for every t ∈ [0, 1],
Bt ≤ B1 and the time reversed Brownian motion (B1 − B1−t)t∈[0,1] would have constant
sign.

Exercise 3 — Hölder regularity of Brownian trajectories.
Let B be a Brownian motion, recall from Exercise 4 of TD8 that the process X = (tB1/t)t≥0

is also a Brownian motion.

(1) Show that limt→∞
Bt

t
= 0 a.s. and that for every ε > 0, limt→∞

Bt

t1/2+ε = 0 a.s..

Setting s = 1
t
, we have limt→∞

Bt

t
= lims→0Xs = 0. In addition, since X is

1/2− ε/2-Hölder in a neighborhood of 0, we have

lim
t→∞

Bt

t1/2+ε
= lim

s→0
sε/2

Xs

s
1−ε
2

= 0.

(2) Let (ξn) be a sequence of independent and identically distributed centered random
variables with variance 1,
(a) For every K ∈ R, show that P(lim supn→∞{

∑n
k=1 ξk ≥ K

√
n}) > 0.
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P(lim sup
n→∞

{
n∑

k=1

ξk ≥ K
√
n}) = P(∩N ∪n≥N {

n∑
k=1

ξk ≥ K
√
n})

= lim
N→∞

P(∪n≥N{
n∑

k=1

ξk ≥ K
√
n})

≥ lim
N→∞

P({
N∑
k=1

ξk ≥ K
√
N})

= P(N (0, 1) ≥ K)

> 0.

Where we have used the central limit theorem to go from 2nd to last to last
line.

(b) Show that almost surely

lim sup
n→∞

1√
n

n∑
k=1

ξk = +∞.

By Kolmogorov’s 0-1 law, the probability of the event in the previous question
is actually = 1. Since lim sup{f(n) ≥ K} = {lim sup f(n) ≥ K}, we have for
every K ≥ 1, lim supn→∞

1√
n

∑n
k=1 ξk ≥ K. Thus the result.

(3) Deduce from the previous question that,

lim sup
t→∞

Bt√
t
= +∞ and lim inf

t→∞

Bt√
t
= −∞,

lim sup
t→0

Bt√
t
= +∞ and lim inf

t→0

Bt√
t
= −∞.

Since −B is also a Brownian motion, the second inequality in each display follows
from the first. For the first eqaulity of the first display, observe that we can apply
the result of the previous question to ξn = Bn−Bn−1, and obtain lim supn→∞

Bn√
n
=

+∞. But lim supt→∞
Bt√
t
≥ lim supn→∞

Bn√
n
, so the result follows. To get the first

inequality of the second display, we deduce from the time inversion property by
applying the first inequality of the first display to X.

(4) Recall that given a function f : R+ → R and t ≥ 0, we say that f is locally α-Hölder
near t if there exists a neighborhood V of t in R+ such that for every s ∈ V , we
have

|f(s)− f(t)| ≤ |t− s|α.

(a) Show that almost surely B is not locally 1/2-Hölder near 0.
This the content of the previous proposition.
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(b) For every t ≥ 0, define Lt = lim sups→0

∣∣∣Bt+s−Bt√
s

∣∣∣ and A = {t ∈ R+, Lt < +∞}.
Show that almost surely the set A is negligible with respect to the Lebesgue
measure.
According to the previous question for every t, Lt = ∞ almost surely, so we
have

EL1(A) = E
∫ ∞

0

1Lt<∞dt

=

∫ ∞

0

P(Lt < ∞)dt

= 0.

(c) Show that the set of points near which B is locally 1/2-Hölder is almost surely
negligible with respect to the Lesbesgue measure. This set is contained in the
set the set of the privous question.

Exercise 4 — The set of zeros of B is perfect.
Recall that for every S ⊂ R we say that x ∈ S is an isolated point if there exists a
neighborhood V of x in R such that V ∩ S = {x}. Let B be a Brownian motion, and

Z = {t ≥ 0 : Bt = 0}.

(1) Show that the following events are almost sure,
(a) Z is infinite and is a closed set. Z is the zero set of a continuous function, so it

is closed. We know that the trajectories of the Brownian change sign infinitely
many times close to 0 so Z is infinite.

(b) Z has Lebesgue measure 0. Let L1 denote the Lesbesgue measure on R+. let
T > 0, we have

EL1(Z ∩ [0, T ]) = E
∫ T

0

1t∈Zdt

=

∫ T

0

E1t∈Zdt

=

∫ T

0

P(t ∈ Z)dt

=

∫ T

0

P(Bt = 0)dt

= 0.

For every T > 0, almost surely L1(Z ∩ [0, T ]) = 0, taking union over T ∈ N,
yields almost surely L1(Z) = 0.

(c) Z has no isolated points. Let t ∈ Z, define Rt = inf{s > 0, Bs+t −Bt = 0} the
hitting time of 0 by B(t). Since a Brownian motion vanishes infinitely many
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times close to 0, according to the simple Markov property, we have Rt = 0
almost surely. So almost surely, for every ε > 0, there exists s ∈ (0, ε) such
that Bt+s −Bt = 0, that is t+ s ∈ Z. so t is not isolated in Z.

(2) (⋆) Make the definition of random closed set rigorous by defining a σ-algebra on
the set of closed subsets of R+. Let F denote the set of closed subsets of R+, the
Hausdorff distance

d(F,G) = max

{
sup
f∈F

d(f,G), sup
g∈G

d(g, F )

}
,

defines a metric on F and one can define a σ-algebra on F by choosing the Borel
σ-algebra associated to d (the σ-algebra generated by open sets of (F, d)).

Exercise 5 — Another counter-example.
Let Xt = ABt where B is a Brownian motion started from 1 and A an independent uniform
random variable in {−1, 1}.

(1) Show that X is a Markov process and give its transition kernel.
(2) Show that it does not verify the strong Markov property.

Exercise 6 — Brownian motion on the circle.
Define a Brownian motion on the circle S1 by setting Xt = eiBt for t ≥ 0. What is the
distribution of the last point hit by X in S1?


