
ENS de Lyon — Math Department Master 1 — Spring 2025
Stochastic Processes V. Issa & E. Jacob

TD8 : Construction of the Brownian Motion

Exercise 1 — Transformations.
Let (Bt)t≥0 be a Brownian motion.

(1) Show that for any λ ∈ R⋆
+, the process (λ−1/2Bλt)t≥0 is a Brownian motion.

(2) Show that B1 −B1−t is a Brownian motion on [0, 1].

We first consider the finite-dimensional marginals of the new process (Xt)t in these two
cases. Remark at first that they still form centered Gaussian vectors, since they are each
obtained by a very simple linear transform of some f.d.m. of B. Now we only need to
compute covariances.

(1) Cov(Xs, Xt) = Cov(λ−1/2Bλs, λ
−1/2Bλt) = λ−1Cov(Bλs, Bλt) = λ−1(λs∧λt) = s∧t.

(2) For 0 ≤ s, t ≤ 1, Cov(Xs, Xt) = Cov(B1 − B1−s, B1 − B1−t) = Cov(B1, B1) −
Cov(B1, B1−t)−Cov(B1−s, B1)+Cov(B1−s, B1−t) = 1− (1− t)− (1− s)+ (1− s)∧
(1− t) = 1 + (t− 1) ∧ (s− 1) = t ∧ s.

Now since those processes are continuous on their domain of definition, they are Brownian
motions.

Exercise 2 — Constructing a Brownian motion indexed by R+.
Let (B(n))n be a sequence of independent Brownian motions defined on [0, 1]. For every
t ≥ 0, define

Bt = B
(⌊t⌋)
t−⌊t⌋ +

⌊t⌋−1∑
i=0

B
(i)
1 .

Show that (Bt)t≥0 is a Brownian motion.
We can check continuity for all ω manually. Now a f.d.m. Bt1 , . . . , Btk is a very simple
linear transform of (some f.d.m. of B(1), some f.d.m. of B(2),. . ., some f.d.m. of B(⌊tk⌋)).
Because of the independence assumption, this is a big Gaussian vector. Now we compute
covariances. Let s ≤ t.

Cov(Bs, Bt) = Cov

B
(⌊s⌋)
s−⌊s⌋ +

⌊s⌋−1∑
i=0

B
(i)
1 , B

(⌊⌋)
t−⌊t⌋ +

⌊t⌋−1∑
i=0

B
(i)
1


=

{∑⌊s⌋−1
i=0 Var(B

(i)
1 ) + Cov(B

(⌊s⌋)
s−⌊s⌋, B

(⌊t⌋)
t−⌊t⌋) if ⌊t⌋ = ⌊s⌋∑⌊s⌋−1

i=0 Var(B
(i)
1 ) + Cov(B

(⌊s⌋)
s−⌊s⌋, B

(⌊s⌋)
1 ) if ⌊t⌋ > ⌊s⌋

= s.

This completes the proof.
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Exercise 3 — Lévy’s construction of the Brownian motion.
Let H = L2([0, 1]) with the usual inner product. For t ≥ 0 let It = 1[0,t] ∈ H. We also set
(ei)i∈N to be an orthonormal basis of H.

(1) Check that ⟨Is, It⟩ = s ∧ t.
Immediate.

(2) Assume that there exists a H-valued standard Gaussian random variable. That is,
a random variable ξ ∈ H, such that for every x ∈ H, ⟨x, ξ⟩ ∼ N (0, |x|2).
(a) Using the random variable ξ and the functions (It)t≥0, build a Gaussian process

(Bt)t∈[0,1] such that Cov(Bs, Bt) = s ∧ t.
Setting Bt = ⟨ξ, It⟩ yields a Gaussian process with the right covariance kernel.
It can be checked by defintion of ξ that every linear combination of coordinates
of (Bt1 , . . . , Btk) is Gaussian and that E[(Bt −Bs)

2] = |t− s|.
(b) Let Zi = ⟨ξ, ei⟩, so that ξ =

∑
i∈N Ziei. Show that the (Zi) are indepen-

dent standard Gaussians (Hint: Compute the characteristic function of finite
subvectors.). Deduce that the process of the previous question would satisfy,

(†) Bt =
∞∑
n=0

Zn

∫ t

0

ei(s)ds.

We have,

E[exp(it1Zi1 + · · ·+ itpZip)] = E[exp(i⟨t1e1 + · · ·+ tpep, ξ⟩] =
p∏

i=1

e−it2p/2.

Hence the distribution is that of i.i.d. standard Gaussians.

(†) Bt = ⟨ξ, It⟩ =
∞∑
i=0

⟨ξ, ei⟩⟨It, ei⟩ =
∞∑
n=0

Zn

∫ t

0

ei(s)ds.

(c) By computing |ξ|2, show that ξ cannot exist.
∥ξ∥2 =

∑∞
i=0 Z

2
i which is a.s. not convergent. Indedd, p = P(Zn ≥ 1) is

independent of n and > 0 so
∑

n P(Zn ≥ 1) diverges and by Borel-Cantelli

P(∀N∃n ≥ N,Zn ≥ 1) = 1.

This last event is contained in the event {
∑∞

i=0 Z
2
i diverges}.

(3) Define h0 = 0 and for n ≥ 0 and 0 ≤ k < 2n,

hk,n := 2n/2
(
1[ 2k

2n+1 ,
2k+1

2n+1 ]
−1[ 2k+1

2n+1 ,
2k+2

2n+1 ]

)
,

We admit (or recall) that (hk,n)k,n is an orthonormal basis of H called the Haar
wavelet basis. Let (Zn,k)n,k be a family of independent standard Gaussian random
variables. For every t ≥ 0 set

(††) Bt = tZ +
∞∑
n=0

Fn(t),
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where Fn(t) =
∑2n−1

k=0 Zn,kfn,k(t) and fn,k(t) =
∫ t

0
hn,k(s)ds.

(a) Using the inequality P(|Y | ≥ λ) ≤
√

2/π

λ
e−λ2

for λ > 0 and Y ∼ N (0, 1), show
that

P
(
2−

n+2
2 max

0≤k<2n
|Zn,k| >

1

n2

)
= o

(
1

n2

)
.

P
(
2−

n+2
2 max

0≤k<2n
|Zn,k| >

1

n2

)
≤ 2nP

(
2−

n+2
2 |Zn,1| >

1

n2

)
≤ n2

√
π
2

n−3
2 exp

(
−2n+1

n4

)
= o

(
1

n2

)
.

(b) Show that P
(
∥Fn∥∞ ≤ 1

n2 for n large enough
)
= 1.

We have ∥Fn∥∞ ≤ 2−
n+2
2 max0≤k<2n |Zn,k|, by the previous question

∑
n P

(
∥Fn∥∞ > 1

n2

)
≤

+∞ so by Borel-Cantelli, almost surely for n large enough ∥Fn∥∞ ≤ 1/n2.
(c) Show that almost surely, the sum of functions in (††) converges uniformly on

[0, 1] to a (random) continuous function.
The result follows directly from the previous question by looking at the differ-
ence between partial sums nad using Cauhchy’s criterion.

(4) (⋆) Prove the same result than in the previous question when we use the Fourier
basis e0 = 1, and em(t) =

√
2 cos(πmt) in (†) rather than the Haar wavelet basis.

Exercise 4 — Time inversion.
Let (Bt)t≥0 be a Brownian motion. Set Xt = tB1/t for t > 0 and X0 = 0.

(1) Show that X has the finite-dimensional marginals of a Brownian motion.
We first consider the finite-dimensional marginals of the new process (Xt)t in

this case. Remark at first that they still form centered Gaussian vectors, since they
are each obtained by a very simple linear transform of some f.d.m. of B. Now we
only need to compute covariances: If 0 < s, t, Cov(Xs, Xt) = Cov(sB1/s, tB1/t) =
st(s−1∧t−1) = t∧s. If either t = 0 or s = 0, then we get 0 = s∧t for the covariance
too.

(2) Show that the set U = {f ∈ RQ+ , limt→0,t∈Q ft = 0} ⊂ RQ+ is measurable.
Observe that,

U =
⋂
n≥1

⋃
m∈N

⋂
q∈Q+

q≤1/m

{A : |fq| < 1/n},

hence U belongs to the σ-algebra generated by finite-dimensional sets.
(3) Deduce that (Xt)t is continuous almost surely, hence may be modified on a negligible

event to form a Brownian motion.
By the π−λ (monotone class) theorem, two measures that coincide on a π-system

Π (a family of sets stable by finite intersection), coincide on the generated σ-algebra
σ(Π). As a result, since B and X have the same finite-dimensional marginals, then

P(X|Q+ ∈ U) = P(B|Q+ ∈ U) = 1.
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Hence we have with probability one that:
(a) t 7→ Xt is continuous on (0,∞),
(b) Xt −−−−−−→

t→0+,t∈Q
X0

wich together implies continuity on the whole of [0,∞). Now if we change the X to
the constant zero function whenever X is not continuous, this makes X continuous
for all ω without changing the f.d.m’s. So X is a Brownian motion.


