
ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TD7 : Gaussian vectors, conditionning

Exercice 1 — Gaussian vectors.
Let X be a random vector in Rn. We say that it is a Gaussian vector if for every t ∈ Rn,
the random variable ⟨t,X⟩ ∈ R has a Gaussian distribution (with possibly null variance).

(1) Recall the parameters, the characteristic function, and (when it exists) the p.d.f.
of a Gaussian distribution on R.

The parameters are the mean µ ∈ R and the variance σ2 ≥ 0. When σ2 =
0, the distribution is just the Dirac in µ, and when σ2 > 0, it has pdf f(t) =

1√
2πσ2

e−(t−µ)2/(2σ2). In both cases the characteristic function is ϕ(t) = eiµt−σ2t2/2.

(2) Show that t 7→ E[⟨t,X⟩] is a linear form, and (s, t) 7→ Cov[⟨s,X⟩, ⟨t,X⟩] is a positive
semi-definite bilinear form. Let them be represented by ⟨·,m⟩ and ⟨·,Σ·⟩. Give an
interpretation of mi and Σij for every i, j ∈ {1, . . . , n}.
It is immediate to check that t 7→ E[⟨t,X⟩] is a linear form, and (s, t) 7→

Cov[⟨s,X⟩, ⟨t,X⟩] is a positive semi-definite bilinear form. By decomposing on
the standard Euclidean basis it turns out that mi = E[Xi] and Σi,j = Cov(Xi, Xj).
We call those the mean vector and the covariance matrix of X.

(3) Let X be a Gaussian vector, for every t ∈ Rn, compute E[ei⟨t,X⟩]. Briefly explain
why the distribution of X is characterized by the parameters m and Σ.
We have that ⟨t,X⟩ is a Gaussian of mean ⟨t,m⟩ and variance ⟨t,Σt⟩. So by

taking the characteristic function of ⟨t,X⟩ at point 1 we get E[ei⟨t,X⟩] = exp(i⟨t,m⟩−
1
2
⟨t,Σt⟩). So the distribution of X is completely characterized by the parameters

m and Σ.
(4) Let X be a Gaussian vector with parameters (m,Σ) and A be a p×n matrix, show

that AX ∈ Rp is a Gaussian vector, and compute its parameters.
Compute E[ei⟨t,Ax⟩] = E[ei⟨⊺At,x⟩] = exp(i⟨⊺At,m⟩−1

2
⟨⊺At,Σ⊺At⟩) = exp(i⟨t, Am⟩−

1
2
⟨t, AΣ⊺At⟩). Gaussianity and identification of the parameters follows.

(5) We say that two processes A and B are uncorrelated when for every index t, s,
Cov(At, Bs) = 0. Let V1 and V2 be two subspaces of Rn and X a Gaussian vector.
Show that the σ-algebras σ(⟨t,X⟩, t ∈ V1) and σ(⟨t,X⟩, t ∈ V2) are independent if
and only if (⟨t,X⟩)t∈V1 and (⟨s,X⟩)s∈V2 are uncorrelated.
If we have the independence condition, then for t ∈ V1 and s ∈ V2, we have

Cov[⟨t,X⟩, ⟨s,X⟩] = 0 by Fubini’s theorem (justified since everybody is in L2).
But the converse is also true: Suppose that for every t ∈ V1 and s ∈ V2, we have
Cov[⟨t,X⟩, ⟨s,X⟩] = 0. Let f1, . . . fm be a finite family in V1 followed by a finite
family in V2. Set Y = (⟨f1, X⟩, . . . , ⟨fm, X⟩) = (Y1, Y2). Then, by computing
covariances, we see that the covariance matrix of Y is block-diagonal. This means
that we have a product decomposition E[ei(⟨t1,Y 1⟩+⟨t2,Y2⟩] = E[ei⟨t1,Y1⟩]E[ei⟨t2,Y2⟩]. By
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injectivity of the characteristic distribution, we have identified the distribution of
(Y1, Y2) as one of an independent couple of two Gaussian vectors. Now because by
definition the σ-algebra spanned by a family of variables is generated by the finite
subfamilies, we get the independence of the two σ-algebras.

(6) Build two standard Gaussian variables X and Y that are uncorrelated yet not
independent (they obviously do not form a Gaussian vector !)

The classic example : set (X,A) to be an independent couple of a standard
Gaussian and a Rademacher variable (uniform on {±1}). Set Y = AX. Then Y
is not independent of X (P(|X| ≤ 1, |Y | ≤ 1) = P(|X| ≤ 1) ̸= P(|X| ≤ 1)2). Yet
Cov(X, Y ) = E[AX2] = E[A]E[X2] = 0× 1 = 0.

(7) Show that the vector (X1, . . . Xn) with X1, . . . , Xn independent standard Gaussian
variables, is Gaussian. Use it to build a Gaussian vector with arbitrary parameters.
Deduce its p.d.f. when it has one.

If X = (X1, . . . Xn) then we compute E[ei⟨t,X⟩] = e−
1
2
⟨t,t⟩. So it’s Gaussian. For

m a vector and Σ a semi-definite positive matrix, and consider Y = m+Σ1/2X. It
should have the prescribed parameters. Furthermore, the pdf of X is given by

fX(t) =
n∏

i=1

1√
2π

e−t2i /2 =
1

(2π)n/2
e−|t|2/2.

Therefore, since

(Y ∈ A) = (X ∈ Σ−1/2(A−m)) =

∫
Σ−1/2(A−m)

fX(t)dt

performing the change of variables s = m + Σ1/2t we obtain that the pdf of Y is
given by,

fY (t) =
1√

(2π)ndet(Σ)
e−

1
2
(s−m)·Σ−1(s−m).

Exercice 2 — Conditioning and independence.
Let G be a σ-algebra, X ∈ G and Y ⊥⊥ G be two random variables, and f : R2 → R
such that f(X, Y ) ∈ L1. Compute E[f(X, Y ) | G]. Deduce the conditional distribution of
f(X, Y ) given G.
Set u(x) = E[f(x, Y )] =

∫
f(x, y)dPY (y). According to Fubini’s theorem, u(x) is defined

PX-a.e. Let us check that the almost-surely defined random variable u(X) satisfies the
universal property required from the conditional expectation E[f(X, Y ) | G]. Let Z be a
G-measurable bounded random variable. Then Zf(X, Y ) ∈ L1, and since Y is independent
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of (X,Z), which means P(X,Z,Y ) = P(X,Z)⊗PY . We deduce

E[Zf(X, Y )] =

∫
zf(x, y)dP(X,Z,Y )(x, z, y) =

∫
zf(x, y)d(P(X,Z) ⊗PY )(x, z, y)

=

∫
z

(∫
f(x, y)dPY (y)

)
dP(X,Z)(x, z) (Fubini)

= E[Zu(X)].

This proves the claim.
For the second part, Let µ(x, ·) denote the distribution of f(x, Y ). Then for every bounded
measurable ϕ,

E[ϕ(f(X, Y ))|G] = E[ϕ(f(x, Y ))]x=X =

(∫
ϕ(u)µ(x, du)

)
x=X

=

∫
ϕ(u)µ(X, du).

This implies that the distribution of f(X, Y ) given G is µ(X, ·).

Exercice 3 — Gaussian conditional distribution and Bayesian statistics 101.
Let (X, Y ) be a non-degenerate centered Gaussian vector in R2 with covariance matrix

Σ =

(
σ2
x ρ
ρ σ2

y

)
.

(1) For every y ∈ R, compute the conditional distribution of X given Y = y.
To do this, we project X on σ(Y ) to write

X =
Cov(X, Y )

Var(Y )
Y +

(
X − Cov(X, Y )

Var(Y )
Y

)
,

the two terms of this sum being uncorrelated hence independent, as they themselves
form a Gaussian vector. Writing Z the second term, we end up with

X =
ρ

σ2
Y

Y + Z,

where Z is independent of Y . We deduce Var(X) = ρ2

σ4
Y
Var(Y )+Var(Z), and hence

Var(Z) = σ2
X − ρ2

σ2
Y
. Using the previous exercise, we deduce that the conditional

probability kernel of X given Y is

(y, ·) 7→ P
(

ρ

σ2
Y

y + Z ∈ ·
)

= N
(

ρ

σ2
Y

y, σ2
X − ρ2

σ2
Y

)
(·).

(2) Let θ ∼ N (0, τ 2) and Y1, . . . , Yn i.i.d. ∼ N (0, σ2) random variables, assume that
(θ, Y1, . . . , Yn) is a Gaussian vector. Define Xi = θ + Yi. What is the conditional
distribution of θ given X = 1

n

∑n
i=1Xi = x ?

Applying the previous question, we get that the law of θ given X = x is the
normal law of mean x

1+ σ2

nτ2

and variance 1
n
σ2+

1
τ2
.
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(3) Give an interpretation of the situation discribed in the previous question.
We may interpret this as follows: a real-world parameter θ must be measured.

Prior (theoretical or based on the past) knowledge gives us its a priori distribution
N (0, τ 2). We are also given noisy measurements X1, . . . , Xn of this parameter,
and wonder what the distribution of θ becomes after adding this supplementary
information.

(4) Compute the limit of the distribution of θ given X = x and give an interpretation
in each of the following cases.
(a) σ → +∞

The limit as σ → ∞ is N (0, τ 2). When the observations are very random,
they give no information about θ.

(b) σ → 0
The limit as σ → 0 is N (x, 0) = δx. When the observations are not random,
they equal θ almost surely, hence the distribution of θ given the observations
is not random.

(c) τ → +∞
The limit as τ → ∞ is N (x, σ2/n). The prior distribution of θ is very random
hence contains no information. That is why the conditional distribution given
X is not biased towards 0 anymore. Note that we recover the point of view
of inferential statistics : when θ is unknown but deterministic, we indeed have
θ − x ∼ N (0, σ2/n).

(d) τ → 0
The limit as τ → 0 is N (0, 0) = δ0. Indeed since the prior distribution of θ
becomes deterministically equal to 0, then the posterior does too.

(5) (⋆) What about the conditional distribution of θ given (X1, . . . Xn) ? It turns out
that the conditional distribution of θ given (X1, . . . Xn) is the same as the one
given X. Indeed if we replay the proof of question 1 and project θ on X, we
get θ = nτ2

nτ2+σ2X + Z, and it turns out that not only Cov(X,Z) = 0 but also
Cov(Xi, Z) = 0, 1 ≤ i ≤ n. Hence we may continue as in question 1.

Exercice 4 — Limit in distribution of Gaussian vectors.
Let (Xn)n≥0 be a sequence of Gaussian variables (Xn)n≥0. Give a necessary and sufficient
condition for convergence in distribution, show that the limit is always Gaussian, and
determine its parameters.
Hint: You can use tightness to show that when (Xn)n≥0 converges in distribution, the
sequence (EXn)n≥0 is bounded.
We are going to show that a sequence of Gaussian random variables (Xn)n≥0 converges in
distribution if and only if its mean and variance converge. That is, there exist real numbers
µ and σ2 ≥ 0 such that

E[Xn] → µ and Var(Xn) → σ2 as n → ∞.

Furthermore we are going to show that in this case the limit in distribution of (Xn) is a
Gaussian random variable with mean µ and variance σ2. Assume that E[Xn] and Var(Xn)
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respectively converge to µ and σ2 then the characteristic function φn of Xn is given by

φn(t) = exp

(
itµn −

1

2
t2σ2

n

)
.

The sequence (φn)n converges pointwise to

φ(t) = lim
n→∞

φn(t) = exp

(
itµ− 1

2
t2σ2

)
.

Observe that φ is the characteristic function of the normal law with mean µ and variance
σ2. By Lévy’s continuity theorem, this means that the sequence (Xn)n≥1 converges in
distribution toward the normal law with mean µ and variance σ2. Conversely assume
that the sequence (Xn)n converges in distribution towards some random variable X with
characteristic function ϕX . By Lévy’s continuity theorem, we have for every t ∈ R

lim
n→+∞

exp

(
itµn −

1

2
t2σ2

n

)
= ϕX(t).

Taking the modulus, we observe that limn→+∞ exp(−t2σ2
n/2) = |ϕX(t)|. Hence, the se-

quence σ2
n converges towards σ2 = −2 log |ϕX(t)|. Let M = supn≥1 |µn| and assume for

now that M < +∞. Let t = π/(2M) > 0, for any limit point µ of (µn) we have

exp(itµ) = lim
n→+∞

exp(itµn) = ϕX(t)/|ϕX(t)|.

Since tµ ∈ (−π, π) this uniquely characterizes µ. Hence, the bounded sequence (µn)n
converges. We now observe that

ϕX(t) = lim
n→+∞

exp

(
itµn −

1

2
t2σ2

n

)
= exp

(
itµ− 1

2
t2σ2

)
.

Thus we have proven that the mean and the variance of Xn converge toward µ and σ2 and
that X is a Gaussian random variable with mean µ and variance σ2. It remains to show
that the sequence (µn)n is indeed bounded. To do so, we rely on the fact that the sequence
(Xn)n is tight. Indeed recall that since for every t ≥ 0, we have that

lim
n→+∞

P(|Xn| ≥ t) = P(|X| ≥ t).

One can prove that for every ε > 0 there exists T (ε) > 0 such that for every n ≥ 1,
P(|Xn| ≥ T (ε)) ≤ ε (this an instance of a result known as Prokhorov’s theorem). If we
assume by contradiction that the sequence (µn)n is not bounded then for every k ∈ N there
exists nk ≥ 1 such that |µnk

| ≥ T (1/k). Then,

1/k ≥ P(|Xnk
| ≥ T (1/k)) ≥ min{P(Xnk

≥ µnk
) + P(Xnk

≤ −µnk
)} = 1/2,

a contradiction.
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Exercice 5 — Borel-Kolmogorov paradox.
Let P denote a uniform point in the sphere S2, i.e. for every bounded measurable f ,∫

f(p)PP (dp) =
1

Leb3(BR3(0, 1))

∫
BR3 (0,1)

f

(
p

|p|

)
Leb3(dp).

Denote ϕP ∈ (−π/2, π/2] its latitude and θP ∈ (−π, π] its (almost surely defined) longitude.

(1) Compute the joint distribution of (θP , ϕP ). We start by computing the joint distri-
bution of (θP , ϕP ) which we will use throughout.

E[h(θP , ϕP )] =

∫
h(θp, ϕp)PP (dp)

=
3

4π

∫
BR3 (0,1)

h(θp/|p|, ϕp/|p|)Leb3(dp)

=
3

4π

∫ 1

0

r2dr

∫ π

−π

dθ

∫ π/2

−π/2

cos(ϕ)dϕ h(θ, ϕ)

=

∫ π

−π

dθ

2π

∫ π/2

−π/2

cos(ϕ)dϕ

2
h(θ, ϕ),

where we applied Lebesgue’s change of variable theorem in line 3, setting

p = (r cos(θ) cos(ϕ), r sin(θ) cos(ϕ), r sin(ϕ)),

which gives

Leb3(dp) = r2 cos(ϕ)drdθdϕ

θp/|p| = θ

ϕp/|p| = ϕ.

On the last line, we read that ϕP and θP are independent, θ has uniform distribution
on [−π, π], while ϕ has density cos(ϕ)/2 on [−π/2, π/2].

(2) Let θP ∈ [0, π) denote a representant of θP modulo π. Compute the conditional
distribution of P given θP . With a step further in the computation above, we may
deduce that (θP , sign(θP ), ϕP ) are independent random variables whose respective
distributions are : uniform in [0, π], uniform in {−1, 1}, and with density cos(ϕ)/2.
From exercise 2, we deduce that conditional on θP = θ, the distribution of P is
that of a point of latitude uniformly chosen in {θ, θ − π} and longitude chosen in
[−π/2, π/2] with density cos(ϕ)/2.

(3) Compute the conditional distribution of P given ϕP . It comes directly from exercise
2 that conditional on ϕP = ϕ, the distribution of P is that of a point with latitude
ϕ and uniform longitude.

(4) Justify that there is only one ”right way” of specializing those answers when com-
puting the conditional distribution of P given θP = 0 and the conditional distribu-
tion of P given ϕP = 0). A conditional probability kernel given some variable Z is
only defined up to PZ-almost-everywhere equality, so it does not really make sense
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to specialize it at a given point z. However, if there is a continuous representative
(i.e. z 7→ µ(z, ·) is continuous in the space of probability measures), then it is
unique. Hence specialization makes sense. This is the case for the two conditional
probability kernels defined above.

(5) What is the paradox ? The paradox is that both procedures yield a probability
measure on some great circle of the sphere, that are really different. In one case the
measure is the image of the Lebesgue measure in S1, while in the other case it is not.
It comes from the fact that conditioning on negligible events is not well-defined.


