
ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TD6 : Invariant Measures

Exercice 1 — Birth and death processes II.
We consider the pure jump Markov process with values in N and intensity matrix Q given
by:

qi,j =


βi si j = i+ 1
δi si j = i− 1
−βi − δi si j = i ̸= 0
−βi si j = i = 0
0 sinon,

where the βi et δi are assumed to be positive (so > 0). We let rn = 1
βn

+
∑n−1

k=0
δk+1...δn
βk...βn

,

and we consider x nonnegative bounded solution to the equation Qx = x.

(1) Show x = 0 iff x0 = 0, and in the case of a nonzero solution is nonzero, show the
sequence (xn) is increasing.
The assumption Qx = x means that coordinates of x satisfy,

{
−β0x0 + β0x1 = x0

δixi−1 − (βi + δi)xi + βixi+1 = xi for i ≥ 1.

This can be recasted into,

x1 =
(
1 + 1

β0

)
x0

xi+1 =
(
1 + 1

βi

)
xi +

δi
βi
(xi − xi−1) for i ≥ 1.

If x0 = 0, then x1 = 0 by the first equation. It follows by induction on i using the
second equation thay xi = 0 for every i ≥ 0. If x0 ̸= 0, then x1 > x0 > 0 and we
can show by induction on i that 0 < xi < xi+1.

(2) For i ∈ N, Show that we have xi + rix0 ≤ xi+1 ≤ (1 + ri)xi. We will reuse the
recurrence equation of (1) and show the result by induction on i. We start by
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showing a recurrence relation for (ri)i≥1. Let i ≥ 1, we have

δi
βi

ri−1 =
δi
βi

(
1

βi−1

+
i−2∑
k=0

δk+1 . . . δi−1

βk . . . βi−1

)

=
δi

βiβi−1

+
i−2∑
k=0

δk+1 . . . δi
βk . . . βi

=
i−1∑
k=0

δk+1 . . . δi
βk . . . βi

= ri −
1

βi

.

We have shown,

ri =
1 + δiri−1

βi

.

We are now ready for the induction. At i = 0, we have r0 = 1/β0 so x0 + β0x0 ≤
x1 ≤ (1 + 1

β0
)x0 holds and is in fact an equality. Let i ≥ 1 and assume that,

xi−1 + ri−1x0 ≤ xi ≤ (1 + ri−1)xi, that is

ri−1x0 ≤ xi − xi−1 ≤ ri−1xi.

In addition the recurrence relation xi+1 =
(
1 + 1

βi

)
xi+

δi
βi
(xi−xi−1) can be rewritten

as

xi+1 − xi =
1

βi

xi +
δi
βi

(xi − xi−1)

Combining the result from the last two displays, we obtain

1

βi

xi +
δi
βi

ri−1x0 ≤ xi+1 − xi ≤
1

βi

xi +
δi
βi

ri−1xi

Using our recurrence relation on ri, we see that the RHS of the above display is
= rixi, in addition since xi ≥ x0, the LHS is lower bounded by 1+δiri−1

βi
x0 = rix0.

We have proven,
xi + rix0 ≤ xi+1 ≤ (1 + ri)xi.

(3) We say that the process doesn’t explode when for every i ∈ N, the probability of
explosion starting from i is 0. Show that the process doesn’t explode if and only∑

rn = +∞. By (2), given x any nonnegative solution of Qx = x, we have or every
i ≥ 0,

x0

i−1∑
k=0

rk ≤ xi ≤ x0

i−1∏
k

(1 + rk).

We will use the fact that
∏

1≤k≤i(1 + rk) converges to a finite limit as i → ∞ if
and only if

∑
rk converges. By a Theorem from the course, the process explodes
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with probability 0 from any starting point if and only Qx = x admits a unique
nonnegative bounded solution. Assume that

∑
ri diverges, let x be a nonzero,

nonnegative solution of Qx = x, by (1) we must have x0 ̸= 0. It follows from
the previous display that x is unbounded. therefore the only bounded nonnegative
solution of Qx = x is x = 0 and the process doesn’t explode. Conversely, assume
that

∑
ri converges, let x be the vector defined by x0 = 1,x1 = 1 + 1

β0
and xi+1 =

(1 + 1
βi
)xi +

δi
βi
(xi − xi−1). By construction, x is a nonzero solution of Qx = x and

x0 ̸= 0, so by (1) xi > x0 > 0, so x is nonnegative. Finally,
∏
(1 + rk) converges

and the partial product upper bound xi, so x is bounded. We have built x ̸= 0
a nonnegative bounded solution of Qx = x, so by the criterion of the course the
process explodes.

Let λi > 0 and p ∈ (0, 1) set q = 1− p and consider X the continuous time Markov chain
with intensity matrix Q with parameters βi = pλi and δi = qλi.

(4) Show that the equation µQ = 0 has a unique solution up to multiplicative constant,
assuming that µ0 =

1
λ0
, give an explicit expression of µi for every i ∈ N.

Asssume that µQ = 0, then µ satisfies,{
−λ0pµ0 + λ1qµ1 = 0

λi−1pµi−1 − λiµi + λi+1qµi+1 = 0 for i ≥ 1.

So the sequence (µi)i satisfies a second order recurrence relation. It is fully de-
termined by µ0 and µ1 = 1

λ1

p
q
λ0µ0. So µ is unique up to multiplicative constant.

Assuming that µ0 =
1
λ0
, we can check that

µi =
1

λi

(
p

q

)i

.

(5) Assume that there exists λ > 0 such that for every i ∈ N, λi = λ and that p < 1/2.
Show thatX doesn’t explode, thatX admits a unique invariant probability measure
and describe the set of invariant measures of X.
Under the above assumption we can check that X doesn’t explode two ways.

First the diagonal coefficients of Q are lower bounded. Or, using the criterion we
just proved by checking that the sequence (rn)n is not summable. Either way X
doesn’t blow up. with the assumption that p < 1/2, we have p

q
< 1, so any solution

of µQ = 0 has finite mass. Therefore invariant measures are exactly the solutions
of µQ = 0. Among the solution of µQ = 0 the only probability measure is,

µi =

(
1− p

q

)(
p

q

)i

.

Therefore, the measure defined above is the unique invariant probability measure
of X. This a ”geometric law” with parameters p/q (not quite be cause it models
the number of failures until the first success).
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(6) Assume that there exists λ > 0 such that for every i ∈ N, λi = λ and that p ≥ 1/2.
Show that X doesn’t explode and that X admits no invariant probability measure.

For the same reasons X doesn’t explode. Let µ be an invariant measure of X.
The measure µ is supported on N, so it must be σ-finite. Therefore, since for every
t ≥ 0, µP (t) = µ, we must have µQ = 0 and thus up to a multiplicative constant
we have,

µi =
1

λ

(
p

q

)i

.

Hence, since p ≥ 1/2, we have p/q ≥ 1 and the µ has infinite mass. Therefore µ is
not a probability measure.

Exercice 2 — M/M/1 queue invariant measure.
Consider a shop where customers are served one at a time. Customers arrive at independent
times and each arrival time follows an exponential law of parameter λ > 0. Customers are
served one after the other, service times are independent and each service time follows an
exponential law of parameter µ > 0. We let Xt denote the number of customers in queue
at time t ≥ 0 (including the customer currently being served). We assume that the queue
is empty at time 0 (X0 = 0).

(1) Show that X is a continuous time Markov chain, give its intensity matrix and show
that X doesn’t blow up.

The process X jump at the minimum time between the arrival of the next client
and the servicing of the first client in the queue. Therefore, the jump times of X
follow the law of the minimum of two exponential random variables of parameter
λ and µ, so is distributed as an exponential variable of parameter λ + µ. The
associated jump process can only go to i + 1 and i − 1 when in state i ≥ 1, the
probability of jumping from i to i + 1 is P(Exp(µ) ≥ Exp(λ)) = λ

λ+µ
. Therefore,

X is a continuous time Markov chain with intensity matrix

Q =


−λ λ 0
µ −λ− µ λ 0
0 µ −λ− µ λ 0

. . . . . . . . . . . . . . .


The diagonal coefficients of Q are lower bounded, so X doesn’t explode.

(2) Show that the process X admits a reversible measure.
If µ is a reversible measure then µiQij = µjQji. Taking j = i + 1, we obtain

µi+1µ = µiλ And we find µi = µ0ρ
i. Conversely we can check that this is an

invariant measure.
(3) Using Exercise 1, give a necessary and sufficient condition for X to admit an in-

variant probability measure π. Express π in terms of ρ = λ/µ. This corresponds to
the set up of exercise 1, with q(i) = λ + µ and p = λ

λ+µ
. From exercise 1 we know

that the process admits an invariant probability distribution if and only if p < 1/2,



5

this corresponds to ρ < 1. We have,

πi = (1− ρ)ρi.

(4) Assume that the condition of question (2) is fufilled, on average how much time do
we have to wait until the first tile we see 0 customers in the queue ? In the large t
limit, what is the probability that here is no customers left in the queue ?

We know that as t → ∞ Xt converges in law to the π and πi =
1

q(i)Ei[T i]
. We

have E0[T
0] = 1

q(0)π0
= µ(λ+µ)

µ−λ
. limt→∞ P(Xt = 0) = π0 = 1 − ρ. And the mean of

Xt converges to the mean of π which is ρ
1−ρ

(5) (⋆) Find again an invariant measure of X by using the following observation (that
you will show). Let π be an invariant measure of X, and let Π(s) =

∑
n≥1 π(n)s

n

be its generating function of, then for every s ∈ (−1, 1),

λs2Π(s)− (λ+ µ)s(Π(s)− π0) + µ(Π(s)− π0)− λπ0s = 0.

Exercice 3 — More hitting times.
Let TA be the hitting time of A and hA(i) = Pi(T

A < +∞),

(1) Show that the vector (hA(i))i∈I is the minimal non-negative solution to{
hA(i) = 1 if i ∈ A∑

j∈I qi,jhA(j) = 0 otherwise.

(2) Provide a similar interpretation to the minimal nonnegative solution of the system{
k(i) = 0, if i ∈ A,∑

j∈I qi,jk(j) = −hA(i) otherwise.

(3) Applications: Let Q be the intensity matrix on I = {1, 2, 3, 4} given by:

Q =


−1 1/2 1/2 0
1/4 −1/2 0 1/4
1/6 0 −1/3 1/6
0 0 0 0


For any given initial state, compute the probability of hitting state 3, as well as the
expectation of the hitting time of state 4.


