ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TDG6 : Invariant Measures

Exercice 1 — Birth and death processes I1.

We consider the pure jump Markov process with values in N and intensity matrix () given
by:

Bi sij=1i+1
0; sij=1—1

Gij=9q —Bi—06 sij=i#0
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where the f; et §; are assumed to be positive (so > 0). We let r,, = 5 + > (1) 62:1 On
and we consider x nonnegative bounded solution to the equation Qx = x.

(1) Show = = 0 iff xy = 0, and in the case of a nonzero solution is nonzero, show the
sequence (z,,) is increasing.
The assumption (Qx = x means that coordinates of x satisfy,

—Bozo + Bor1 = T
dixi1 — (Bi + )z + Biwipn = x; for i > 1.

This can be recasted into,

X0

If o = 0, then x; = 0 by the first equation. It follows by induction on ¢ using the
second equation thay x; = 0 for every ¢ > 0. If ¢y # 0, then x; > 2y > 0 and we
can show by induction on ¢ that 0 < x; < z;41.

(2) For ¢« € N, Show that we have z; + r;xg < x4 < (1 4+ r;)z;. We will reuse the

recurrence equation of (1) and show the result by induction on i. We start by
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showing a recurrence relation for (r;);>1. Let i > 1, we have

0; 51<;+1
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We have shown,
1+ 0 7”1 1

r., =
s
We are now ready for the induction. At ¢ = 0, we have 1y = 1/5y so xg + Boxo <
r < (1+ Bio)ato holds and is in fact an equality. Let ¢ > 1 and assume that,
w1 +rim1wg < w; < (14 7-1)x;, that is
Vi1l < Tp — Timg < 710

In addition the recurrence relation z;; = ( 1+ Bi) xi—l—%(ygi—xi,l) can be rewritten

as
1 . 0 ( )
Titl — Ti = 5T T 5 \Ti — Ti—1
’ 6B
Combining the result from the last two displays, we obtain
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Using our recurrence relation on r;, we see that the RHS of the above display is
= r;x;, in addition since x; > xg, the LHS is lower bounded by Héé#xo = 7;T0.
We have proven,

€T; + ;X0 S Tivr1 S (1 + Ti)l’i
(3) We say that the process doesn’t explode when for every ¢ € N, the probability of

explosion starting from ¢ is 0. Show that the process doesn’t explode if and only
> r, = 400. By (2), given x any nonnegative solution of Qz = x, we have or every

1> 0,
i1 i—1
xOZrk <x; <z H(l + 7).
k=0 k

We will use the fact that [, (1 + 7%) converges to a finite limit as i — oo if
and only if > 7, converges. By a Theorem from the course, the process explodes
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with probability 0 from any starting point if and only Qx = z admits a unique
nonnegative bounded solution. Assume that > r; diverges, let x be a nonzero,
nonnegative solution of Qx = x, by (1) we must have 2o # 0. It follows from
the previous display that = is unbounded. therefore the only bounded nonnegative
solution of Qx = x is x = 0 and the process doesn’t explode. Conversely, assume
that > r; converges, let x be the vector defined by zo = 1,27 = 1 + % and z;,1 =

(1+ é)xz + %(wz — x;_1). By construction, z is a nonzero solution of Qz = = and
zo # 0, so by (1) z; > ¢y > 0, so x is nonnegative. Finally, [](1 + rx) converges
and the partial product upper bound z;, so x is bounded. We have built = # 0
a nonnegative bounded solution of Qx = x, so by the criterion of the course the

process explodes.

Let A; > 0 and p € (0,1) set ¢ = 1 — p and consider X the continuous time Markov chain
with intensity matrix () with parameters §; = p); and 9; = ¢\;.
(4) Show that the equation u@ = 0 has a unique solution up to multiplicative constant,
assuming that pg = )\—10, give an explicit expression of y; for every ¢ € N.
Asssume that p@) = 0, then p satisfies,

—Aoppio + Argpin = 0
Ai—1Pti—1 — Aifhi + Nip1qpir = 0 for ¢ > 1.

So the sequence (p;); satisfies a second order recurrence relation. It is fully de-
termined by po and pp = ,\%g)\o,uo- So p is unique up to multiplicative constant.

Assuming that pg = %0, we can check that

MZ_)\z‘ q)

(5) Assume that there exists A > 0 such that for every i € N, \; = X and that p < 1/2.
Show that X doesn’t explode, that X admits a unique invariant probability measure
and describe the set of invariant measures of X.

Under the above assumption we can check that X doesn’t explode two ways.
First the diagonal coefficients of () are lower bounded. Or, using the criterion we
just proved by checking that the sequence (r,), is not summable. Either way X
doesn’t blow up. with the assumption that p < 1/2, we have %’ < 1, so any solution
of @ = 0 has finite mass. Therefore invariant measures are exactly the solutions
of u@ = 0. Among the solution of u@) = 0 the only probability measure is,

(-5

Therefore, the measure defined above is the unique invariant probability measure
of X. This a ”geometric law” with parameters p/q (not quite be cause it models
the number of failures until the first success).



(6)

Assume that there exists A > 0 such that for every i € N, \; = X\ and that p > 1/2.
Show that X doesn’t explode and that X admits no invariant probability measure.

For the same reasons X doesn’t explode. Let p be an invariant measure of X.
The measure p is supported on N; so it must be o-finite. Therefore, since for every
t >0, uP(t) = p, we must have @) = 0 and thus up to a multiplicative constant
we have,

Hence, since p > 1/2, we have p/q > 1 and the p has infinite mass. Therefore p is
not a probability measure.

Exercice 2 — M/M/1 queue invariant measure.

Consider a shop where customers are served one at a time. Customers arrive at independent
times and each arrival time follows an exponential law of parameter A > 0. Customers are
served one after the other, service times are independent and each service time follows an
exponential law of parameter u > 0. We let X; denote the number of customers in queue
at time ¢ > 0 (including the customer currently being served). We assume that the queue
is empty at time 0 (Xo = 0).

(1)

Show that X is a continuous time Markov chain, give its intensity matrix and show
that X doesn’t blow up.

The process X jump at the minimum time between the arrival of the next client
and the servicing of the first client in the queue. Therefore, the jump times of X
follow the law of the minimum of two exponential random variables of parameter
A and g, so is distributed as an exponential variable of parameter A + pu. The
associated jump process can only go to ¢ + 1 and 7 — 1 when in state ¢ > 1, the
probability of jumping from i to i + 1 is P(Exp(p) > Exp(\)) = ﬁ Therefore,
X is a continuous time Markov chain with intensity matrix

—-A A 0
o =AN— A 0
Q=1 o 1 —“A—u A 0

The diagonal coefficients of () are lower bounded, so X doesn’t explode.
Show that the process X admits a reversible measure.

If 1 is a reversible measure then 1;Q);; = p;jQj. Taking j = i + 1, we obtain
piip = A And we find p; = pop’. Conversely we can check that this is an
invariant measure.

Using Exercise 1, give a necessary and sufficient condition for X to admit an in-
variant probability measure . Express 7 in terms of p = A\/p. This corresponds to
the set up of exercise 1, with ¢(i) = A+ p and p = ﬁ/\u From exercise 1 we know
that the process admits an invariant probability distribution if and only if p < 1/2,



this corresponds to p < 1. We have,

7= (1—p)p".

(4) Assume that the condition of question (2) is fufilled, on average how much time do
we have to wait until the first tile we see 0 customers in the queue ? In the large ¢
limit, what is the probability that here is no customers left in the queue ?

We know that as ¢t — oo X; converges in law to the m and m; = W[T] We
have Ey[T°] = q(ol)m = “iﬁi\”). limy oo P(X; = 0) =m0 = 1 — p. And the mean of

X; converges to the mean of m which is i"”p
(5) (%) Find again an invariant measure of X by using the following observation (that
you will show). Let 7 be an invariant measure of X, and let II(s) = > _, m(n)s"

be its generating function of, then for every s € (—1,1),
ASPTL(s) — (A + p)s(T1(s) — 7o) + p(II(s) — mp) — Ammos = 0.

Exercice 3 — More hitting times.
Let T be the hitting time of A and h(i) = P;(T4 < +o0),
(1) Show that the vector (h4(i));es is the minimal non-negative solution to
hA(Z) =1 ifie A
> jer Gijha(j) = 0 otherwise.
(2) Provide a similar interpretation to the minimal nonnegative solution of the system
k(i) =0, ifi e A,
> ier€ijk(j) = —ha(i) otherwise.
(3) Applications: Let @ be the intensity matrix on [ = {1,2, 3,4} given by:
-1 1/2 1/2 0
o_ |U4 ~L2 01
“ 116 0 -1/3 1/6
0 0 0 0

For any given initial state, compute the probability of hitting state 3, as well as the
expectation of the hitting time of state 4.



