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TD5 : Kolmogorov’s Equation

Exercice 1 — Birth and death processes.
We consider the continuous time Markov process X with values in N and intensity matrix
Q given by:

qi,j =


βi si j = i+ 1
δi si j = i− 1
−βi − δi si j = i ̸= 0
−βi si j = i = 0
0 sinon,

where the βi et δi are assumed to be nonnegative.

(1) Let i ∈ N, using Kolmogorov’s backward equation, write down a system of differen-
tial equations satisfied by pij(t) = Pi(Xt = j). Kolmogorov’s equation states that
P ′(t) = P (t)Q so given i ∈ N we have,{

p′i0(t) = −β0pi0(t) + δ1pi1(t)

p′ij(t) = βj−1pi,j−1(t)− (βj + δj)pi,j(t) + δj+1pi,j+1(t) for every j ≥ 1.

(2) Assume that for all i ∈ N, δi = 0, show that the system of differential equations of
the previous question admits at most one solution on R+.

We show that there is a unique solution by induction on j. If p, q both solve the
system of the previous question, then the j = 1 equation imposes for all i, pi0 = qi0.
Let J ≥ 1 if for all i ≥ 1 and j ≤ J we have pij = qij, then the j = J + 1 equation
of the system imposes pi,J+1 = qi,J+1, thus the result.

(3) Assume that for all i ∈ I, βi = β and δi = 0, show that when the process is started

at X0 = 0, the law of Xt is Poisson with parameter βt. Let pj(t) = e−βt (βt)
j

j!
, we

have p′0(t) = −βp0(t) and for j ≥ 1, pj(t) = −βpj(t) + βpj−1(t). So according to
question (1), P(Xt = j) and pj(t) solves the same differential system, so according
to question (2) they are equal.

(4) Assume that for all i ∈ I, βi = 0 and δi = iδ, show that when the process is started
at X0 = C > 0, the law of Xt is binomial with parameters (C, e−δt). We are going
to proceed as in the previous question. Note that in this case we have not proven
uniqueness of solutions to the system. But, because the birth rate is zero (βi = 0)
we have Xt ≤ C PC almost surely. Therefore PC(Xt = j) = 0 for j > C and since
(pij)1≤j≤C is a finite dimensional vector it is characterized by the ODE it satisfies.

Thus, it suffices to show that pj(t) =
(
C
j

)
e−δtj(1−e−δt)C−j satisfies the right system

of differential equations. First all of it is clear that pj = 0 for j > C. In addition,
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for j ≤ C we have,

p′j(t) =

(
C

j

)
(−δj)e−δtj(1− e−δt)C−j +

(
C

j

)
e−δtj(1− e−δt)C−j−1(C − j)(−δ)(−e−δt).

Since (C − j)
(
C
j

)
= (j + 1)

(
C

j+1

)
it follows that

p′j(t) = −δjpj(t) + δj+1pj+1(t).

Thus the result.
(5) Give an interpretation of the Markov chain in (4), and use it to compute the value

of the extinction probability PC(Xt = 0).
This corresponds to a model started with C independent bacterias, each of them

dies according to an exponential time of parameter δ and Xt is the number of
bacterias at time t. In particular, the probability that a chosen bacteria is alive at
time t is P(Exp(δ) ≤ t) = 1 − e−δt. Since there are C independent bacterias the
probability that they are all dead at time t is (1− e−δt)C .

Exercice 2 — Kolmogorov Equations Makes Life Easier.
Let I be a set and X a continuous time Markov chain with intensity matrix Q. Let λ be
a signed measure on I and f : I → R, we let gλ(t) = Eλ[f(Xt)] :=

∑
λ({i})Ei[f(Xt)]. In

this exercise, we assume that the integrals/sums are well-defined and that we can derive
under the integral/sum. Note this is in particular always the case when I is finite, but
could be false in general.

(1) Identifying the measure λ with the lign vector (λ({i}))i∈I and the function f with
the column vector (f(j))j∈I , show we have

gλ(t) = λP (t)f.

Let t ≥ 0, since the law Xt under Pi is (pi,j(t))j∈J , we have

gλ(t) =
∑
i∈I

λ(i)Ei[f(Xt)] =
∑
i,j∈I

λ(i)pi,j(t)f(j).

(2) Show that gλ is differentiable and that for every t ≥ 0,

g′λ(t) = EλQ[f(Xt)] = Eλ[Qf(Xt)].

By Kolmogorv’s forward and backward equation we have for every t ≥ 0, P ′(t) =
QP (t) = P (t)Q. So gλ is differentiable and we have,

g′λ(t) = λQP (t)f = EλQ[f(Xt)]

g′λ(t) = λP (t)Qf = Eλ[Qf(Xt)].

Consider a population of independent bacterias. Each of the bacteria splits into two bac-
terias after an exponential time of parameter λ. Let Xt denote the number of bacterias in
the population at time t. The process X is a Markov chain with intensity matrix,
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qi,j =


−λi when j = i

λi when j = i+ 1

0 otherwise

(3) Let r ∈ (−1, 1), use the previous questions to find a differential equation satisfied
by g1(t) = E1[r

Xt ].
By the above equation, we have for every t ≥ 0

g′1(t) = Eδ1Q[r
Xt ]

=
∑
j,k

Q1kpkj(t)r
j

= −λ
∑
j

p1j(t)r
j + λ

∑
j

p2j(t)r
j

= −λg1(t) + λg2(t).

We also recall that the law of Xt started from X0 = 2 is the equal to the law of
the sum of two independent copies of Xt started from 1 (Markov property). So
g2(t) = g21(t), and thus g1 is a solution of{

g′(t) = −λg(t) + λg2(t)

g(0) = r.

(4) Compute the law of Xt. If we let f(t) = g1(t)e
λt, we obtain{

f ′(t) = λe−λtf 2(t)

f(0) = r.

This implies is ∫ t

0

f ′(s)s.
f(s)2

=

∫ t

0

λe−λss.

performing the change of variables x = f(s) on the left hand side integral, we obtain

1

r
− 1

f(t)
= 1− e−λt

This yields, gr(t) =
re−λt

1−r(1−e−λt)
. If X is a geometric random variable of parameter

p, we have E[rX ] = rp
1−r(1−p)

, thus Xt is geometric of parameter e−λt and we have,

P(Xt = k) = e−λt(1− e−λt)k−1.
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Exercice 3 — Intensity matrix and transition matrices.
Let I be a finite set, we set that a matrix P on I is stochastic when all of its entries are
nonnegative and for every i ∈ I, ∑

j∈I

Pi,j = 1.

Let Q = (qi,j)i,j∈I be a matrix on I, for t ≥ 0, let P (t) = etQ. We aim to show the
equivalence of the following three statements:

(i) Q is an intensity matrix
(ii) P (t) is a stochastic matrix for all t in a neighbourhood of 0.
(iii) P (t) is a stochastic matrix for all t ≥ 0.

(1) Show (ii) and (iii) are equivalent.
Clearly (iii) =⇒ (ii). Assume (ii), then their exists τ > 0, such that for every

t ∈ [0, τ) the matrix P (t) is stochastic. Let t > 0, let n be an integer strictly larger
than τ/t, so that t/n < τ . We have P (t) = P (t/n)n and the matrix P (t/n) is
stochastic, so P (t) is stochastic as the power of a stochastic matrix.

(2) Show (ii) implies (i).
Assume (ii), we have Q = P ′(0), so if we let pi,j(t) denote the (i, j) coefficient of

P (t), then we have for every i, j ∈ I,

Qij = lim
t→0

pij(t)− δij
t

.

By assumption, their exists τ > 0, such that for every t ∈ [0, τ) the matrix P (t) is
stochastic in particular, for every i ∈ I,

∑
j∈I

Qij = lim
t→0

(∑
j∈I pij(t)

)
− 1

t
= 0.

Fix i, j ∈ I, and t < τ , since P (t) is a stochastic matrix, its coefficients belong to
[0, 1], in particular pii(t)− 1 ≤ 0, so Qii ≤ 0 and pij(t) ≥ 0 so Qij ≥ 0.

(3) We now suppose (i) is satisfied.
(a) Show that for all i and all t, we have

∑
j P (t)i,j = 1. (Hint: Use the ODE

satisfied by P)
Let 1 ∈ RI be the vector with every coordinates equal to 1 and for every t ≥ 0,
let v(t) = P (t)1. The vector v solves,{

v′(t) = Qv(t) on R∗
+

v(0) = 1.

The rows of Q sum to 0. this means that for every Q1 = 0, so w(t) = 1 solve
the same equation as v. By uniqueness, we have v = w and for every t ≥ 0,
P (t)1 = 1.
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(b) Show the entries of the matrix P (t) are nonnegative. Let X be the Markov
chain with intensity matrix Q, we have for every t ≥ 0,

pi,j(t) = P(Xt = j|X0 = i) ≥ 0.

So the matrix P (t) is stochastic.


