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TD4 : Stopping times and Continuous time Markov Chains

Exercice 1 — Elementary results on stopping times.
Let (Ω,F ,F,P) be a filtered probability space. We denote by F+ = (Ft+)t≥0 the right-
continuous completion of the filtration F, where for every t ≥ 0

Ft+ =
⋂
t<s

Fs.

(1) Let T be an F-stopping time, let t ≥ 0 show that {T < t} and {T = t} are
Ft-measurable.

Let t ≥ 0, we have {T < t} = ∪n≥1{T ≤ t(1 − 1
n
)}. For every n ≥ 1, {T ≤

t(1− 1
n
)} ∈ Ft(1− 1

n
) ⊂ Ft. So, {T < t} is Ft-measurable. Then, the set {T = t} =

{T ≤ t} − {T < t} is also Ft-measurable.
(2) Let T be a random variable valued in R+ ∪ {+∞}, show that T is a F+-stopping

time if and only if for every t ≥ 0, {T < t} ∈ Ft.
Assume that T is a F+-stopping time. Let t ≥ 0, we have {T < t} = ∪n≥1{T ≤

t− 1
n
}, for every n ≥ 1, {T ≤ t− 1

n
} ∈ ∪t−1/n<sFs ⊂ Ft+1/n−1/n = Ft. So, {T < t} is

Ft-measurable. Conversely, assume that for every t ≥ 0, {T < t} is Ft-measurable.
Let s > t, there exists N ∈ N such that for every n ≥ N , t + 1/n ≤ s. For every
n ≥ N , {T < t+ 1/n} ∈ Ft+1/n ⊂ Fs. And,

{T ≤ t} = ∩n≥N{T < t+ 1/n} ∈ Fs.

Thus, {T ≤ t} ∈ Ft+.
(3) Let T, S be two F-stopping times, assume that T ≤ S almost surely and show that

FT ⊂ FS. Let A ∈ FT , and let t ≥ 0. Since T ≤ S, {S ≤ t} ⊂ {T ≤ t}, so

A ∩ {S ≤ t} = (A ∩ {T ≤ t}) ∩ {S ≤ t} ∈ Ft.

This shows that A ∈ FS and FT ⊂ FS.
(4) Let T be an F-stopping time, for every n ≥ 1 show that Tn = ⌈2nT ⌉

2n
is a F-stopping

time and that almost surely (Tn)n is a decreasing sequence that converges to T .
Let n ≥ 1, the key observation is that Tn takes discrete values so {Tn ≤ t} =

∪k≤t2n{Tn = k/2n}. Now let k ≤ t2n be an integer, we have

{Tn = k/2n} = {⌈2nT ⌉ = k} = {(k−1)/2n < T ≤ k/2n} = {T ≤ k/2n}−{T ≤ (k−1)/2n}.

So, {Tn = k/2n} ∈ Ft and Tn is a stopping time.

Let E be a metric space equipped with its Borel σ-algebra E . Let A ∈ E be a measurable
set and let X be an E valued F-adapted process. Define,

TA = inf{t ≥ 0, Xt ∈ A}.
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(5) Assume that X has right continuous trajectories. Let O ⊂ E be an open set,
show that TO is a F+-stopping time. Let t ≥ 0, if we show that {TO < t} =
∪s<t,s∈Q+{Xs ∈ O} we are done. Inclusion from right to left is clear. Let ω ∈ Ω
such that for every TO(ω) < t. By contradiction, assume that for every s < t,
Xs(ω) /∈ O. Then, since Oc is closed and Q+ ∩ [0, t) is dense to the right in [0, t)
we would have for every s ∈ [0, t), Xs(ω) /∈ O, which would imply T0 ≥ t, this is
absurd.

(6) Assume that X has continuous trajectories. Let F ⊂ E be a closed set, show
that TF is a F-stopping time. Let Yt = d(F,Xt), Y is adapted and has continuous
trajectories, furthermore TF = inf{t ≥ 0, Yt = 0}. For every t ≥ 0;

{TF ≤ t} = ∪s≤t{Xs ∈ F}
= ∪s≤t{Ys = 0}
= {inf

s≤t
Ys = 0}

= { inf
s∈Q+∩[0,t]

Ys = 0}

∈ Ft.

Note that the first equality is true because XTF
∈ F by continuity of the trajectories

and closeness of F .
(7) Give an example where TO is not a F-stopping time. Let B be a ±1 Bernoulli

random variable with parameter p ∈ (0, 1), define Xt = tB, let F be the natural
filtration associated toX. Then, F0 is the trivial filtration and for t > 0, Ft = σ(B).
Let T be the hitting time of R∗

+ for the process X. We have, {T ≤ 0} = {B = 1} /∈
F0 so T is not a F-stopping time.

Exercice 2 — Transition Matrix Computations.
Let X be a continuous time Markov chain valued in a discrete set I. For every i, j ∈ I and
t ≥ 0 we define pi,j(t) = P(Xt = i|X0 = j) and we let P (t) = (pi,j(t))i,j∈I .

(1) Recall the relation between the intensity matrix Q of the process X and (P (t))t≥0.
We have, for every t ≥ 0, P (t) = etQ.

(2) Let n ≥ 1 and Q ∈ Mn(R) be a diagonalizable matrix, let λ1, . . . , λd ∈ R be the
eigenvalues of Q. Show that there exists a unique d-uplet A1, . . . , Ad ∈ Mn(R) such
that for every t ≥ 0,

etQ =
d∑

i=1

eλitAi.

Show that this result becomes false when Q is not assumed to be diagonalizable.

(Hint :

(
1 1
0 1

)
.)

For every i, j ∈ {1, . . . , n}, let Eij denote the matrix whose coefficients are all
0 except the coefficient (i, j) which is equal to 1. Let D ∈ Mn(R) be a diago-
nal matrix, let λ1, . . . , λd its eigenvalues, for every i ∈ {1, . . . , d} let Ni = {k ∈
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{1, . . . , n}, Dkk = λi} and ni = #Ni. We have, for every t ≥ 0,

etD =
d∑

i=1

eλit
∑
k∈Ni

Ekk.

Now let Q ∈ Mn(R) be a diagonalizable matrix, let P ∈ Mn(R) be an invertible ma-
trix andD ∈ Mn(R) be a diagonal matrix such thatQ = PDP−1. The matrixD ad-
mits a decomposition as above. For every i ∈ {1, . . . , d} let Ai =

∑
k∈Ni

PEkkP
−1.

We have for every t ≥ 0,

etQ = PetDP−1 =
d∑

i=1

eλitAi.

For the counter-example, the proposed matrix satisfies etQ = et
(
1 t
0 1.

)
(3) Compute P (t) for every t ≥ 0 assuming that I = {1, 2} and that,

Q =

(
−λ λ
µ −µ

)
.

If (λ, µ) = (0, 0) the question is trivial, we assume this is not the case. The
eigenvalues of Q are λ1 = 0 and λ2 = −(λ + µ) with eigenvectors v1 = (1, 1) and
v2 = (λ,−µ). Therefore, there exists A,B ∈ M2(R) such that for every t ≥ 0,
etQ = A+ e−(λ+µ)tB. By evaluating t 7→ etQ and its derivative at t = 0, we obtain{

A+ B = I2
λ2B = Q.

Thus, etQ = I2 +
1−e−(λ+µ)t

λ+µ
Q.

(4) Compute P (t) for every t ≥ 0 assuming that I = {1, 2, 3} and that,

Q =

−2 1 1
1 −1 0
2 1 −3

 .

...

Exercice 3 — Explosion time.
Let X be a continuous time Markov chain, with intensity matrix Q such that for every
i ∈ I, q(i) ̸= 0. Let (Yn)n denote the jump process of X and ζ be the explosion time of X.
Let (En)n≥1 be independent exponential random variables with parameters λn ∈ (0,+∞).
We let E denote the value in R+ ∪ {+∞} of

∑
n≥1En.

(1) Assume that
∑

n≥1
1
λn

< +∞, show that P(E < +∞) = 1.

Assume by contradiction that P(E = ∞) > 0, then EE = +∞. But, EE =∑
n≥1 EEn =

∑
n≥1

1
λn

< +∞. So, E is almost surely finite.
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(2) Assume that
∑

n≥1
1
λn

= +∞, show that P(E = +∞) = 1.

Consider the random variable e−E, let us show that P(e−E = 0) = 1. For every

N ≥ 1, let JN =
∑N

n=1 Jn, by definition, almost surely we have E = limN→∞ JN .
And by dominated convergence,

Ee−E = lim
N→∞

Ee−JN .

We have,

Ee−JN =
N∏

n=1

(
1 +

1

λn

)−1

= exp

(
−

N∑
n=1

log

(
1 +

1

λn

))
.

The sum
∑

n≥1 log
(
1 + 1

λn

)
has the same nature as

∑
n≥1

1
λn
. Indeed, if λn → 0

then log
(
1 + 1

λn

)
∼ λn and otherwise both of the sum diverge. So,

∑∞
n=1 log

(
1 + 1

λn

)
=

+∞, hence Ee−E = limN→∞ Ee−JN = 0. The random variable e−E is nonnegative
and as 0 mean, therefore, almost surely e−E = 0. It follows that P(E = +∞) = 1.

(3) We say that X is a Yule process when, X is N-valued and for every n ∈ N, Yn =
Y0 + n. Let λ be a probability measure on N, assume that X is a Yule process and
compute the probability of explosion of X under Pλ in terms of (qn)n.
When X is a Yule process, conditionally on Y0 the jump times (Sn)n of X are

independent exponential random variables with parameters q(Y0 + n) and ζ =∑
n≥1 Sn. So, conditionally on Y0, ζ is almost surely finite or almost surely infinite,

depending on the nature of
∑

n
1

q(n+Y0)
. So, since

∑
n

1
q(n+Y0)

as the same nature as∑
n

1
q(n)

, we deduce that,

P(ζ < +∞) =

{
1 if

∑
n

1
q(n)

< +∞
0 otherwise .

(4) Show that X almost surely doesn’t blow up if and only if P
(∑

n
1

q(Yn)
= +∞

)
= 1.

Same idea as the previous question, conditionally on (Yn)n the jump times are inde-
pendent exponential random variables with parameter (q(Yn))n. So, conditionally
on (Yn)n the blow up time ζ of X is a sum of independent exponential random vari-
ables with parameters (q(Yn))n. This sum is infinite if and only if

∑
n

1
q(Yn)

= +∞,

therefore,

P(ζ = +∞) = P

(∑
n

1

q(Yn)
= +∞

)
.

(5) Show that in the following cases the condition of question (4) is satisfied and so X
almost surely doesn’t blow up.
(a) The state space is finite.
(b) supi∈I q(i) < +∞.
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(c) The jump process Y admits a recurrent state. That is, there exists i ∈ I such
that almost surely the set {n ∈ N, Yn = i} is infinite.

(a) When I is finite, condition (b) and (c) are satisfied, so it is enough to show
that X doesn’t blow up under (b) or (c).

(b) Assume that q = supi∈I q(i) < +∞, then
∑N

n=1
1

q(Yn)
≥ N/q, so

P

(∑
n

1

q(Yn)
= +∞

)
= 1.

(c) Let i ∈ I, assume that i is a recurrent state of Y and let q = q(i). Let K ∈ N,
almost surely, Y visits state i at least K times so P

(∑
n

1
q(Yn)

≥ K
)
= 1. And,

P

(∑
n

1

q(Yn)
= +∞

)
≥ P

(
∀K ∈ N,

∑
n

1

q(Yn)
≥ K

)
= 1.


