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Stochastic processes V. Issa & E. Jacob

TD4 : Stopping times and Continuous time Markov Chains

Exercice 1 — FElementary results on stopping times.
Let (2, F,F,P) be a filtered probability space. We denote by F; = (F;)i>o the right-
continuous completion of the filtration IF, where for every ¢ > 0

./T'-t+ - m Fs.
t<s
(1) Let T be an F-stopping time, let ¢ > 0 show that {T" < t} and {T" = t} are
JFi-measurable.

Let ¢ > 0, we have {T' < t} = U, {T < t(1 — 1)}, For every n > 1, {T <
t(1—1)} e Fia-1y C Fi. So, {T < t} is Fi-measurable. Then, the set {T" =t} =
{T <t} —{T < t} is also F;-measurable.

(2) Let T be a random variable valued in R, U {+o0o}, show that 7" is a F-stopping
time if and only if for every t > 0, {T < t} € F;.

Assume that 7" is a F-stopping time. Let ¢t > 0, we have {T' < t} = U,>1{7T <
t—%}, for everyn > 1, {T' < t—%} € Ut—1/nesFs C Fipimo1/m = Ft. S0, {T < t}is
Fi-measurable. Conversely, assume that for every ¢t > 0, {T < t} is F;-measurable.
Let s > t, there exists N € N such that for every n > N, t + 1/n < s. For every
n>N,{T <t+1/n} € Fiy1m C Fs. And,

{Tgt}:ﬁnzN{T<t+1/n} € F.

Thus, {T' <t} € Fiy.
(3) Let T, S be two F-stopping times, assume that 7' < S almost surely and show that
Fr C Fs. Let A€ Fr,and let t > 0. Since T'< S, {S <t} C {T <t}, so

AN{S<t}=(An{T <thn{S <t} e F.

This shows that A € Fg and Fr C Fgs.
(4) Let T be an F-stopping time, for every n > 1 show that 7,, = m;? lisa F-stopping
time and that almost surely (7,,), is a decreasing sequence that converges to 7.
Let n > 1, the key observation is that T, takes discrete values so {T,, < t} =
Uk<ion{T,, = k/2"}. Now let k < 2" be an integer, we have

{T,=k/2"}y ={[2"T| =k} ={(k—1)/2" < T < k/2"} ={T < k/2"}—{T < (k—1)/2"}.
So, {T,, = k/2"} € F, and T,, is a stopping time.

Let E be a metric space equipped with its Borel o-algebra £. Let A € £ be a measurable
set and let X be an E valued F-adapted process. Define,

TA = 1nf{t Z O,Xt € A}
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(5) Assume that X has right continuous trajectories. Let O C E be an open set,
show that Tp is a F,-stopping time. Let ¢ > 0, if we show that {1y, < t} =
Us<tscq, {Xs € O} we are done. Inclusion from right to left is clear. Let w € Q
such that for every Tp(w) < t. By contradiction, assume that for every s < t,
Xs(w) ¢ O. Then, since O° is closed and Q4 N [0,¢) is dense to the right in [0,¢)
we would have for every s € [0,t), Xs(w) ¢ O, which would imply Ty > ¢, this is
absurd.

(6) Assume that X has continuous trajectories. Let F' C E be a closed set, show
that Tr is a F-stopping time. Let Y; = d(F, X;), Y is adapted and has continuous
trajectories, furthermore Tp = inf{t > 0,Y; = 0}. For every ¢t > 0;

{TF S t} - Usgt{Xs S F}
- Usgt{Y; - O}
- =0
= inf Y,=0
gty Yo =0

c Fi.

Note that the first equality is true because Xp, € F' by continuity of the trajectories
and closeness of F'.

(7) Give an example where Ty is not a F-stopping time. Let B be a +1 Bernoulli
random variable with parameter p € (0,1), define X; = ¢tB, let F be the natural
filtration associated to X. Then, Fy is the trivial filtration and for t > 0, 7, = o(B).
Let T" be the hitting time of R for the process X. We have, {T' <0} = {B =1} ¢
Fo so T is not a F-stopping time.

Exercice 2 — Transition Matriz Computations.
Let X be a continuous time Markov chain valued in a discrete set I. For every ¢,j € [ and
t > 0 we define p; ;(t) = P(X; = i|Xo = j) and we let P(t) = (pi;(t))ijer-
(1) Recall the relation between the intensity matrix @ of the process X and (P(t)):>o.
We have, for every t > 0, P(t) = !9,
(2) Let n > 1 and @ € M,(R) be a diagonalizable matrix, let Ay,...,A\s € R be the
eigenvalues of (). Show that there exists a unique d-uplet Ay, ..., Ay € M,(R) such
that for every t > 0,

d
@ = E NtA,
i=1

Show that this result becomes false when @) is not assumed to be diagonalizable.
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(Hint : 01 )
For every i,7 € {1,...,n}, let E;; denote the matrix whose coefficients are all
0 except the coefficient (i,7) which is equal to 1. Let D € M,(R) be a diago-
nal matrix, let A1,..., \s its eigenvalues, for every i € {1,...,d} let N; = {k €



(4)

{1,...,n}, Dix, = \;} and n; = #N;. We have, for every t > 0,

d
etD _ E 6)\1'1? E Ekk

i=1 kEN;

Now let @ € M, (R) be a diagonalizable matrix, let P € M, (R) be an invertible ma-
trix and D € M, (R) be a diagonal matrix such that Q@ = PDP~!. The matrix D ad-
mits a decomposition as above. For every i € {1,...,d} let A; =", PEwP™".
We have for every t > 0,

d
elQ = petPp~t = Z Mt A,

i=1

0 1.
Compute P(t) for every ¢t > 0 assuming that I = {1,2} and that,

@= (_MA —Au)'

If (A\,u) = (0,0) the question is trivial, we assume this is not the case. The
eigenvalues of @ are \; = 0 and Ay = —(\ + p) with eigenvectors v; = (1,1) and
vy = (A, —pu). Therefore, there exists A, B € Ms(R) such that for every ¢ > 0,
e = A+ e~ WWEB By evaluating t — /9 and its derivative at ¢ = 0, we obtain

A+ B - IQ
MB = Q.

. .. 1 t
For the counter-example, the proposed matrix satisfies e’? = et )

tQ _ 1—e—(A+pu)t
Thus, '~ = I, + S Q.

Compute P(t) for every ¢t > 0 assuming that I = {1,2,3} and that,
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Exercice 3 — Ezplosion time.

Let X be a continuous time Markov chain, with intensity matrix ) such that for every
ie€l,q(i)#0. Let (Y,), denote the jump process of X and ¢ be the explosion time of X.
Let (E,)n>1 be independent exponential random variables with parameters A, € (0, +00).
We let E denote the value in Ry U {400} of > ., E,.

(1) Assume that ) -, ﬁ < 400, show that P(E < 4+00) = 1.

Assume by contradiction that P(E = oo) > 0, then EE = +oco. But, EE =

Y1 BB =35 %ﬂ < 400. So, E is almost surely finite.



(2) Assume that > -, ﬁ = 400, show that P(E = +00) = 1.
Consider the random variable e~Z, let us show that P(e=¥ = 0) = 1. For every
N >1,let Jy = ZnN:1 Jn, by definition, almost surely we have £ = limy_,, Jn.
And by dominated convergence,

Ee F = lim Ee /¥
N—o0

We have,

N 1! N 1
EeJN:H(l—i—)\—) = exp (—Zlog(1+)\—)>.
n n=1 n

n=1
The sum ) -, log <1 + ﬁ) has the same nature as ) -, ﬁ Indeed, if A\, — 0

then log (1 + ﬁ) ~ A, and otherwise both of the sum diverge. So, > > | log (1 + ﬁ) =

+00, hence Ee™% = limy_,oo Ee™/¥ = 0. The random variable e~ ¥ is nonnegative

and as 0 mean, therefore, almost surely e=* = 0. It follows that P(E = +o00) = 1.

(3) We say that X is a Yule process when, X is N-valued and for every n € N, Y,, =
Yy +n. Let A be a probability measure on N, assume that X is a Yule process and
compute the probability of explosion of X under Py in terms of (¢ ).-

When X is a Yule process, conditionally on Y the jump times (S,), of X are
independent exponential random variables with parameters ¢(Yy + n) and { =
Zn>1 Sp. So, conditionally on Yy, Q is almost surely ﬁnite or almost surely infinite,

. So, since )

depending on the nature of > as the same nature as

>on ﬁ we deduce that,

nqn+Y nqn—l—Y)

; 1
Lif 3, ooy < +o0
0 otherwise .

P(¢ < +00) = {

(4) Show that X almost surely doesn’t blow up if and only if P (Zn @ = +oo) =1.

Same idea as the previous question, conditionally on (Y},), the jump times are inde-
pendent exponential random variables with parameter (¢(Y})),. So, conditionally
on (Y,), the blow up time ¢ of X is a sum of independent exponential random vari-

. . . . . . . . . . 1 o
ables with parameters (¢(Y},)),. This sum is infinite if and only if ) o = 100
therefore,

]P(g—+oo)—19<2@—+oo>.

(5) Show that in the following cases the condition of question (4) is satisfied and so X
almost surely doesn’t blow up.
(a) The state space is finite.
(b) sup;er q(i) < +oo0.
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(c) The jump process Y admits a recurrent state. That is, there exists ¢ € I such
that almost surely the set {n € N,Y,, = ¢} is infinite.

(a) When [ is finite, condition (b) and (c) are satisfied, so it is enough to show
that X doesn’t blow up under (b) or (c).
(b) Assume that ¢ = sup,¢; q(i) < 400, then Zivzl q(}l,n) > N/q, so

1
P —— =400 | =1.
(Za-+)
almost surely, Y visits state ¢ at least K times so P (Zn q(il,n) > K> = 1. And,

P(%:@:wo)zﬂm(wmm;@zzg):




