TD4 : Stopping times and Continuous time Markov Chains

Exercice 1 — Elementary results on stopping times.

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space. We denote by $\mathbb{F}_+ = (\mathcal{F}_{t+})_{t\geq 0}$ the rightcontinuous completion of the filtration \mathbb{F} , where for every $t \geq 0$

$$\mathcal{F}_{t+} = \bigcap_{t < s} \mathcal{F}_s.$$

(1) Let T be an \mathbb{F} -stopping time, let $t \ge 0$ show that $\{T < t\}$ and $\{T = t\}$ are \mathcal{F}_t -measurable.

Let $t \ge 0$, we have $\{T < t\} = \bigcup_{n\ge 1} \{T \le t(1-\frac{1}{n})\}$. For every $n \ge 1$, $\{T \le t(1-\frac{1}{n})\} \in \mathcal{F}_{t(1-\frac{1}{n})} \subset \mathcal{F}_t$. So, $\{T < t\}$ is \mathcal{F}_t -measurable. Then, the set $\{T = t\} = \{T \le t\} - \{T < t\}$ is also \mathcal{F}_t -measurable.

(2) Let T be a random variable valued in $\mathbb{R}_+ \cup \{+\infty\}$, show that T is a \mathbb{F}_+ -stopping time if and only if for every $t \ge 0$, $\{T < t\} \in \mathcal{F}_t$.

Assume that T is a \mathbb{F}_+ -stopping time. Let $t \ge 0$, we have $\{T < t\} = \bigcup_{n \ge 1} \{T \le t - \frac{1}{n}\}$, for every $n \ge 1$, $\{T \le t - \frac{1}{n}\} \in \bigcup_{t-1/n < s} \mathcal{F}_s \subset \mathcal{F}_{t+1/n-1/n} = \mathcal{F}_t$. So, $\{T < t\}$ is \mathcal{F}_t -measurable. Conversely, assume that for every $t \ge 0$, $\{T < t\}$ is \mathcal{F}_t -measurable. Let s > t, there exists $N \in \mathbb{N}$ such that for every $n \ge N$, $t + 1/n \le s$. For every $n \ge N$, $\{T < t + 1/n\} \in \mathcal{F}_{t+1/n} \subset \mathcal{F}_s$. And,

$$\{T \le t\} = \bigcap_{n \ge N} \{T < t + 1/n\} \in \mathcal{F}_s.$$

Thus, $\{T \leq t\} \in \mathcal{F}_{t+}$.

(3) Let T, S be two \mathbb{F} -stopping times, assume that $T \leq S$ almost surely and show that $\mathcal{F}_T \subset \mathcal{F}_S$. Let $A \in \mathcal{F}_T$, and let $t \geq 0$. Since $T \leq S$, $\{S \leq t\} \subset \{T \leq t\}$, so

$$A \cap \{S \le t\} = (A \cap \{T \le t\}) \cap \{S \le t\} \in \mathcal{F}_t.$$

This shows that $A \in \mathcal{F}_S$ and $\mathcal{F}_T \subset \mathcal{F}_S$.

(4) Let T be an \mathbb{F} -stopping time, for every $n \ge 1$ show that $T_n = \frac{\lfloor 2^n T \rfloor}{2^n}$ is a \mathbb{F} -stopping time and that almost surely $(T_n)_n$ is a decreasing sequence that converges to T. Let $n \ge 1$, the key observation is that T_n takes discrete values so $\{T_n \le t\} = \bigcup_{k \le t2^n} \{T_n = k/2^n\}$. Now let $k \le t2^n$ be an integer, we have

$$\{T_n = k/2^n\} = \{\lceil 2^n T \rceil = k\} = \{(k-1)/2^n < T \le k/2^n\} = \{T \le k/2^n\} - \{T \le (k-1)/2^n\}.$$

So, $\{T_n = k/2^n\} \in \mathcal{F}_t$ and T_n is a stopping time.

Let *E* be a metric space equipped with its Borel σ -algebra \mathcal{E} . Let $A \in \mathcal{E}$ be a measurable set and let *X* be an *E* valued \mathbb{F} -adapted process. Define,

$$T_A = \inf\{t \ge 0, X_t \in A\}.$$

- (5) Assume that X has right continuous trajectories. Let $O \subset E$ be an open set, show that T_O is a \mathbb{F}_+ -stopping time. Let $t \geq 0$, if we show that $\{T_O < t\} = \bigcup_{s < t, s \in \mathbb{Q}_+} \{X_s \in O\}$ we are done. Inclusion from right to left is clear. Let $\omega \in \Omega$ such that for every $T_O(\omega) < t$. By contradiction, assume that for every s < t, $X_s(\omega) \notin O$. Then, since O^c is closed and $\mathbb{Q}_+ \cap [0, t)$ is dense to the right in [0, t)we would have for every $s \in [0, t), X_s(\omega) \notin O$, which would imply $T_0 \geq t$, this is absurd.
- (6) Assume that X has continuous trajectories. Let $F \subset E$ be a closed set, show that T_F is a \mathbb{F} -stopping time. Let $Y_t = d(F, X_t)$, Y is adapted and has continuous trajectories, furthermore $T_F = \inf\{t \ge 0, Y_t = 0\}$. For every $t \ge 0$;

$$\begin{aligned} \{T_F \leq t\} &= \cup_{s \leq t} \{X_s \in F\} \\ &= \cup_{s \leq t} \{Y_s = 0\} \\ &= \{\inf_{s \leq t} Y_s = 0\} \\ &= \{\inf_{s \in \mathbb{Q}_+ \cap [0,t]} Y_s = 0\} \\ &\in \mathcal{F}_t. \end{aligned}$$

Note that the first equality is true because $X_{T_F} \in F$ by continuity of the trajectories and closeness of F.

(7) Give an example where T_O is not a \mathbb{F} -stopping time. Let B be a ± 1 Bernoulli random variable with parameter $p \in (0, 1)$, define $X_t = tB$, let \mathbb{F} be the natural filtration associated to X. Then, \mathcal{F}_0 is the trivial filtration and for t > 0, $\mathcal{F}_t = \sigma(B)$. Let T be the hitting time of \mathbb{R}^*_+ for the process X. We have, $\{T \leq 0\} = \{B = 1\} \notin \mathcal{F}_0$ so T is not a \mathbb{F} -stopping time.

Exercice 2 — Transition Matrix Computations.

Let X be a continuous time Markov chain valued in a discrete set I. For every $i, j \in I$ and $t \geq 0$ we define $p_{i,j}(t) = \mathbb{P}(X_t = i | X_0 = j)$ and we let $P(t) = (p_{i,j}(t))_{i,j \in I}$.

- (1) Recall the relation between the intensity matrix Q of the process X and $(P(t))_{t\geq 0}$. We have, for every $t \geq 0$, $P(t) = e^{tQ}$.
- (2) Let $n \geq 1$ and $Q \in M_n(\mathbb{R})$ be a diagonalizable matrix, let $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$ be the eigenvalues of Q. Show that there exists a unique *d*-uplet $A_1, \ldots, A_d \in M_n(\mathbb{R})$ such that for every $t \geq 0$,

$$e^{tQ} = \sum_{i=1}^d e^{\lambda_i t} A_i.$$

Show that this result becomes false when Q is not assumed to be diagonalizable. (Hint : $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.)

For every $i, j \in \{1, \ldots, n\}$, let E_{ij} denote the matrix whose coefficients are all 0 except the coefficient (i, j) which is equal to 1. Let $D \in M_n(\mathbb{R})$ be a diagonal matrix, let $\lambda_1, \ldots, \lambda_d$ its eigenvalues, for every $i \in \{1, \ldots, d\}$ let $N_i = \{k \in$

 $\{1,\ldots,n\}, D_{kk} = \lambda_i\}$ and $n_i = \#N_i$. We have, for every $t \ge 0$,

$$e^{tD} = \sum_{i=1}^{d} e^{\lambda_i t} \sum_{k \in N_i} E_{kk}.$$

Now let $Q \in M_n(\mathbb{R})$ be a diagonalizable matrix, let $P \in M_n(\mathbb{R})$ be an invertible matrix and $D \in M_n(\mathbb{R})$ be a diagonal matrix such that $Q = PDP^{-1}$. The matrix D admits a decomposition as above. For every $i \in \{1, \ldots, d\}$ let $A_i = \sum_{k \in N_i} PE_{kk}P^{-1}$. We have for every $t \geq 0$,

$$e^{tQ} = Pe^{tD}P^{-1} = \sum_{i=1}^d e^{\lambda_i t} A_i.$$

For the counter-example, the proposed matrix satisfies $e^{tQ} = e^t \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ (3) Compute P(t) for every $t \ge 0$ assuming that $I = \{1, 2\}$ and that,

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}.$$

If $(\lambda, \mu) = (0, 0)$ the question is trivial, we assume this is not the case. The eigenvalues of Q are $\lambda_1 = 0$ and $\lambda_2 = -(\lambda + \mu)$ with eigenvectors $v_1 = (1, 1)$ and $v_2 = (\lambda, -\mu)$. Therefore, there exists $A, B \in M_2(\mathbb{R})$ such that for every $t \ge 0$, $e^{tQ} = A + e^{-(\lambda + \mu)t}B$. By evaluating $t \mapsto e^{tQ}$ and its derivative at t = 0, we obtain

$$\begin{cases} A+ & B=I_2\\ & \lambda_2 B=Q \end{cases}$$

Thus, $e^{tQ} = I_2 + \frac{1 - e^{-(\lambda + \mu)t}}{\lambda + \mu}Q.$

(4) Compute P(t) for every $t \ge 0$ assuming that $I = \{1, 2, 3\}$ and that,

$$Q = \begin{pmatrix} -2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -3 \end{pmatrix}$$

•••

Exercice 3 — Explosion time.

Let X be a continuous time Markov chain, with intensity matrix Q such that for every $i \in I$, $q(i) \neq 0$. Let $(Y_n)_n$ denote the jump process of X and ζ be the explosion time of X. Let $(E_n)_{n\geq 1}$ be independent exponential random variables with parameters $\lambda_n \in (0, +\infty)$. We let E denote the value in $\mathbb{R}_+ \cup \{+\infty\}$ of $\sum_{n>1} E_n$.

(1) Assume that $\sum_{n\geq 1} \frac{1}{\lambda_n} < +\infty$, show that $\mathbb{P}(E < +\infty) = 1$. Assume by contradiction that $\mathbb{P}(E = \infty) > 0$, then $\mathbb{E}E = +\infty$. But, $\mathbb{E}E = \sum_{n\geq 1} \mathbb{E}E_n = \sum_{n\geq 1} \frac{1}{\lambda_n} < +\infty$. So, E is almost surely finite. (2) Assume that $\sum_{n\geq 1} \frac{1}{\lambda_n} = +\infty$, show that $\mathbb{P}(E = +\infty) = 1$.

Consider the random variable e^{-E} , let us show that $\mathbb{P}(e^{-E} = 0) = 1$. For every $N \ge 1$, let $J_N = \sum_{n=1}^N J_n$, by definition, almost surely we have $E = \lim_{N \to \infty} J_N$. And by dominated convergence,

$$\mathbb{E}e^{-E} = \lim_{N \to \infty} \mathbb{E}e^{-J_N}.$$

We have,

$$\mathbb{E}e^{-J_N} = \prod_{n=1}^N \left(1 + \frac{1}{\lambda_n}\right)^{-1} = \exp\left(-\sum_{n=1}^N \log\left(1 + \frac{1}{\lambda_n}\right)\right).$$

The sum $\sum_{n\geq 1} \log\left(1+\frac{1}{\lambda_n}\right)$ has the same nature as $\sum_{n\geq 1} \frac{1}{\lambda_n}$. Indeed, if $\lambda_n \to 0$ then $\log\left(1+\frac{1}{\lambda_n}\right) \sim \lambda_n$ and otherwise both of the sum diverge. So, $\sum_{n=1}^{\infty} \log\left(1+\frac{1}{\lambda_n}\right) = +\infty$, hence $\mathbb{E}e^{-E} = \lim_{N\to\infty} \mathbb{E}e^{-J_N} = 0$. The random variable e^{-E} is nonnegative and as 0 mean, therefore, almost surely $e^{-E} = 0$. It follows that $\mathbb{P}(E = +\infty) = 1$.

(3) We say that X is a Yule process when, X is N-valued and for every $n \in \mathbb{N}$, $Y_n = Y_0 + n$. Let λ be a probability measure on N, assume that X is a Yule process and compute the probability of explosion of X under \mathbb{P}_{λ} in terms of $(q_n)_n$.

When X is a Yule process, conditionally on Y_0 the jump times $(S_n)_n$ of X are independent exponential random variables with parameters $q(Y_0 + n)$ and $\zeta = \sum_{n\geq 1} S_n$. So, conditionally on Y_0 , ζ is almost surely finite or almost surely infinite, depending on the nature of $\sum_n \frac{1}{q(n+Y_0)}$. So, since $\sum_n \frac{1}{q(n+Y_0)}$ as the same nature as $\sum_n \frac{1}{q(n)}$, we deduce that,

$$\mathbb{P}(\zeta < +\infty) = \begin{cases} 1 \text{ if } \sum_{n \in \overline{q(n)}} < +\infty \\ 0 \text{ otherwise }. \end{cases}$$

(4) Show that X almost surely doesn't blow up if and only if $\mathbb{P}\left(\sum_{n} \frac{1}{q(Y_n)} = +\infty\right) = 1$. Same idea as the previous question, conditionally on $(Y_n)_n$ the jump times are independent exponential random variables with parameter $(q(Y_n))_n$. So, conditionally on $(Y_n)_n$ the blow up time ζ of X is a sum of independent exponential random variables with parameters $(q(Y_n))_n$. This sum is infinite if and only if $\sum_n \frac{1}{q(Y_n)} = +\infty$, therefore,

$$\mathbb{P}(\zeta = +\infty) = \mathbb{P}\left(\sum_{n} \frac{1}{q(Y_n)} = +\infty\right).$$

- (5) Show that in the following cases the condition of question (4) is satisfied and so X almost surely doesn't blow up.
 - (a) The state space is finite.
 - (b) $\sup_{i \in I} q(i) < +\infty$.

- (c) The jump process Y admits a recurrent state. That is, there exists $i \in I$ such that almost surely the set $\{n \in \mathbb{N}, Y_n = i\}$ is infinite.
- (a) When I is finite, condition (b) and (c) are satisfied, so it is enough to show that X doesn't blow up under (b) or (c).
- (b) Assume that $q = \sup_{i \in I} q(i) < +\infty$, then $\sum_{n=1}^{N} \frac{1}{q(Y_n)} \ge N/q$, so

$$\mathbb{P}\left(\sum_{n}\frac{1}{q(Y_n)} = +\infty\right) = 1.$$

(c) Let $i \in I$, assume that i is a recurrent state of Y and let q = q(i). Let $K \in \mathbb{N}$, almost surely, Y visits state i at least K times so $\mathbb{P}\left(\sum_{n = 1}^{n} \frac{1}{q(Y_n)} \ge K\right) = 1$. And,

$$\mathbb{P}\left(\sum_{n} \frac{1}{q(Y_n)} = +\infty\right) \ge \mathbb{P}\left(\forall K \in \mathbb{N}, \sum_{n} \frac{1}{q(Y_n)} \ge K\right) = 1.$$