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TD3 : Transition semigroups and more on Poisson processes

Exercice 1 — Transition semigroups.
In this exercise, questions are independent.

(1) Let d ≥ 1, let (µt)t≥ be a family of probability measures on (Rd,B(Rd)). Assume
that there exists a measurable function ϕ : Rd → R such that for every t ≥ 0,
the characteristic function of µt is given by ξ 7→ etϕ(ξ). Let (Xt)t≥0 be independent
random variables such that for every t ≥ 0, Xt has law µt. For every t ≥ 0 and
x ∈ Rd, let Pt(x, ·) be the law of x+Xt. Show that (Pt)t≥0 is a Markov semigroup
on (Rd,B(Rd)).

Let t, s ≥ 0 and x ∈ Rd, we are going to show that the characteristic functions
of Pt+s(x, ·) and

∫
E
Ps(x, dy)Pt(y, dx

′) are equal. Let ξ ∈ Rd,∫
E

exp(ix′ · ξ)Pt+s(x, dx
′) = E [exp(iξ · (x+Xt+s))]

= exp(ξ · x+ (t+ s)ϕ(ξ)

= E [exp(iξ · (x+Xs +Xt)]

= E [E[exp(iξ · (x+Xs +Xt)|Xs]]

= E
[∫

E

exp(iξ · x′)Pt(x+Xs, dx
′)

]
=

∫
E

∫
E

exp(iξ · x′)Pt(y, dx
′)Ps(x, dy)

=

∫
x′∈E

exp(iξ · x′)

∫
y∈E

Pt(y, dx
′)Ps(x, dy).

(2) Using the previous question, show that the Poisson semigroup, the Gaussian semi-
group, and the Cauchy semigroup from lecture 2 are indeed Markov semigroups.
Briefly explain why it’s not possible to use question (1) to show that the lognormal
semigroup is indeed a Markov semigroup.

One can compute the characteristic function of each of those semigroups and ob-
serve that they are of the form etϕ(ξ) as in the previous question. With respectively
ϕ(ξ) = λ(eiξ − 1), ϕ(ξ) = −ξ2/2 and ϕ(ξ) = −|ξ|. For the log normal semigroup
there is no explicit expression for the characteristic function and we cannot’t pro-
ceed as in the previous question.

(3) Let (E, E) be a measurable space, let (Pt)t≥0 be a Markov semigroup on (E, E) and
let h : E → R∗

+ be a measurable function. For every t ≥ 0 and every x ∈ Rd, we
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define a measure P̂t(x, ·) on E via,

dP̂t(x, ·)
dPt(x, ·)

=
1

h(x)
h(·).

Assume that for every t ≥ 0 and every x ∈ Rd, we have,

h(x) =

∫
E

h(x′)Pt(x, dx
′).

Show that (P̂t)t≥0 is a Markov semigroup on (E, E).
Let t ≥ 0 and x ∈ Rd, we have∫

E

dP̂t(x, dx
′) =

1

h(x)

∫
E

h(x′)dPt(x, dx
′) = 1.

In addition for every A ∈ E , P̂t(x,A) =
∫
A
h(x′)dPt(x, dx

′) ≥ 0, thus P̂t(x, ·) is a

probability measure on E and x 7→ P̂t(x,A) is measurable. So (Pt)t≥0 is a transition
kernel on E. Furthermore, for every t, s ≥ 0 and x ∈ E, we have,

P̂t+s(x, dx
′) =

h(x′)

h(x)
Ps+t(x, dx

′)

=
h(x′)

h(x)

∫
E

Ps(x, dy)Pt(y, dx
′)

=

∫
E

h(y)

h(x)
Ps(x, dy)

h(x′)

h(y)
Pt(y, dx

′)

=

∫
E

P̂s(x, dy)P̂t(y, dx
′).

In conclusion (Pt) is a Markov semigroup on (E, E).

Exercice 2 — Thinning property.
Let (Nt)t≥0 be a Poisson process of intensity λ > 0 and (Xk)k≥0 be iid Bernoulli random
variables with parameter p ∈ [0, 1]. Let

NA
t =

Nt∑
k=1

Xk and NB
t =

Nt∑
k=1

(1−Xk),

(1) Let X a Poisson random variable of parameter α > 0 and (Bn)n be iid Bernoulli

random variables of parameter p independent from X, show that Y =
∑X

n=1Bn is
a Poisson random variable of parameter αp.
Let N ≥ 0, conditionally on X = N , Y is binomial of parameter (N, p). So for
every n ∈ {0, . . . , N},

P(Y = n,X = N) = e−αα
N

N !

(
N

n

)
pn(1− p)N−n.
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Now fix n ≥ 0, summing the above display over N ≥ 0, obtain

P(Y = n) = e−αp (αp)
n

n!
.

(2) Show that NA and NB are independent Poisson processes with intensity λp and
λ(1− p).
We start by proving that NA has right continuous trajectories, stationary and
independent increments, and that NA

t is a Poisson distributed random variable
with parameter λpt. It is clear that the trajectories of NA are right continuous and
that its increments are stationary and independent (because the increments of N
are). Finally according to question 1, NA

t is NA
t is a Poisson distributed random

variable with parameter λpt. This ensures that NA is Poisson process with intensity
λpt, similarly we can show that NB is Poisson process with intensity λ(1− p)t. It
remains to prove that NA and NB are independent. To do so we can again use the
conditionning trick

P(NA
t = k,NB

t = l) = P(NA
t = k,NB

t = l|Nt = k + l)P(Nt = k + l)

=

(
k + l

k

)
pk(1− p)le−λλk+l/(k + l)!

=
e−λp(pλ)k

k!

e−(1−p)λ((1− p)λ)l

l!
= P(NA

t = k)P(NB
t = l).

(3) A bus station observes arrivals of buses, modeled as a Poisson process of intensity
λ. Each arriving bus is either a city bus with probability p, or an intercity bus with
probability 1−p independently of other buses. What is the law of the time between
each city bus ? each intercity bus ? Given t ≥ 0 what is the expected number of
city buses observed at time t given that we have observed n ∈ N buses in total ?
The arrivals of city buses correspond to the process (NA

t )t≥0, which is a Poisson
process with intensity λp. The interarrival times are independent and exponentially
distributed with parameter λp. Similarly, the arrivals of intercity buses correspond
to the process (NB

t )t≥0, thus the interarrival times are independent and exponen-
tially distributed with parameter λ(1− p).
According to question 1, Nt = n, the number of city busesNA

t follows a Binomial(n, p)
distribution. Thus, the expected number of city buses observed by time t, given
that n buses have arrived in total is np.

Exercice 3 — M/GI/∞ queue.

Let X = (Xt)t≥0 be a Poisson process of intensity λ > 0, we denote (Jn)n the jump times
of X. Let (Zn)n be iid random variables, we denote G the cdf of Z1 and 1/µ the mean
of Z1. Consider the following model, you operate a restaurant in which the nth customer
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arrives at time Jn and leaves at time Jn + Zn. You want to estimate the number Nt of
customers in the shop at time t. Note that for every t ≥ 0, we have

Nt =
∑
n

1{Jn ≤ t ≤ Jn + Zn}.

(1) Let t ≥ 0, n ≥ 0 and let U denote a uniform random variable in [0, t], define
p = P(Z1 > U). Show that conditionally on Xt = n, the random variable Nt is
Binomial random variable of parameter (n, p).
Let U1, . . . , Un be independent uniform random variables in [0, t] and let σ be the
permutation of {1, . . . , n} defined almost surely by Uσ(1) < · · · < Uσ(n). Con-
ditionally on Xt = n, (J1, . . . , Jn) has the law of (Uσ(1), . . . , Uσ(n)). Thus, still
conditionally on Xt = n, we have

Nt =
n∑

k=1

1{t ≤ Jk + Zk}

(d)
=

n∑
k=1

1{t ≤ Uσ(k) + Zk}

(d)
=

n∑
k=1

1{t ≤ Uk + Zk}.

So conditionally on Xt = n, Nt is a binomial random variable of parameter (n, p)
where p = P(t ≤ Z1 + U) = P(t − U ≤ Z1) = P(U ≤ Z1). The last inequality

following from the fact that t− U
(d)
= U .

(2) Let t > 0 and α(t) = λ
∫ t

0
P(Z1 > x)dx, show that N(t) is a Poisson random

variable with parameter α(t).
According to the previous given k ≥ 0 and n ≥ k, we have

P(Nt = k,Xt = n) = e−λt(λt)n/n!

(
n

k

)
pk(1− p)n−k.

Summing over n ≥ k, we obtain

P(Nt = k) = e−λtp(λtp)k/k!.

This means that Nt is a Poisson random variable of parameter λtp, finally p =
P(Z1 > U) = 1

t

∫ t

0
P(Z1 > s)ds, thus λtp = α(t).

(3) Show that as t → ∞, Nt converges in law toward a Poisson law of parameter
ρ = λ/µ.
As t → ∞, we have α(t) → λ

∫∞
0

P(Z1 > s)ds = λES = λ/µ. It follows that,

lim
t→∞

P(Nt = k) = e−ρρ
k

k!
.

In France approximately, 1903896 new cars have been bought each year between
1967 and 2023 (source : CCFA, Comité des Constructeurs Français d’Automobiles).
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Assume that the French people buy cars according to a Poisson Process of parameter
λ = 1903896 per year and that there was no car bought before 1967.

(4) Assume that each car owner keeps its car for a duration uniform between 0 and 20
years. What is the expected number of cars in the French fleet in the year 1977 ?
what about in the year 1987 ? and Afterward ?
If we keep the notations of the previous section, the expected number of cars in the
fleet in the year 1967+ t is α(t) = λ

∫ t

0
P(Z1 > s)ds. If Z1 follows a uniform random

variable in [0, b] with b = 20, we have for every s < b, P(Z1 > s)ds = 1 − s/b and
= 0 otherwise. It follows that α is constant after t = b and for t ≤ b, we have,

α(t) = λ

∫ t

0

1− s

b
ds = λ(t− t2

2b
).

We obtain,

α(10) =
3

8
λb ≃ 15M

α(20) = λb/2 ≃ 20M

(5) Answer the previous question now assuming that each owner keeps its car for an
exponential duration of parameter 1/10.
Similar computations yield,

α(t) = λ

∫ t

0

exp(−2s/b)ds =
λb

2

(
1− e−2t/b

)
.


