ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TD3 : Transition semigroups and more on Poisson processes

Exercice 1 — Transition semigroups.
In this exercise, questions are independent.

(1)

Let d > 1, let (u1¢);> be a family of probability measures on (R B(R?)). Assume
that there exists a measurable function ¢ : R? — R such that for every ¢ > 0,
the characteristic function of g, is given by & + e/©). Let (X;);>0 be independent
random variables such that for every ¢ > 0, X; has law p;. For every ¢ > 0 and
z € R% let Py(z,-) be the law of z + X;. Show that (P;)s>o is a Markov semigroup
on (R4, B(RY)).

Let t,s > 0 and x G R?, we are going to show that the characteristic functions
of Prys(x,-) and [, Py(x dy)Pf(y dz') are equal. Let £ € RY,

/ECXpw )Py, d’) = E[exp(i€ - (« + X))

= Cxp(f - T+ (t + 9)¢(€)
= E[exp(i§ - (z + X5 + X3)]
= E [Elexp(i€ - (v + X5 + X;)| X;]]

_EU exp(ié - ) Py(x +Xs7d:c)]
/ / exp(i€ - 2') Py(y, da') P, (x, dy)
= [ ewtiex) [ PP dy).

Using the previous question, show that the Poisson semigroup, the Gaussian semi-
group, and the Cauchy semigroup from lecture 2 are indeed Markov semigroups.
Briefly explain why it’s not possible to use question (1) to show that the lognormal
semigroup is indeed a Markov semigroup.

One can compute the characteristic function of each of those semigroups and ob-
serve that they are of the form €'?€) as in the previous question. With respectively
H(E) = Me®® — 1), ¢(§) = —€2/2 and ¢(§) = —|¢]. For the log normal semigroup
there is no explicit expression for the characteristic function and we cannot’t pro-
ceed as in the previous question.

Let (E, &) be a measurable space, let (P;):>o be a Markov semigroup on (E, £) and

let h: E — R% be a measurable function. For every ¢ > 0 and every z € R?, we
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define a measure P,(x,-) on F via,

dP,(z,") 1
dP(z,-) h(x)h< )

Assume that for every ¢t > 0 and every z € R%, we have,
h(xz) = / h(x")Py(z, dz").
E

Show that (P,);>o is a Markov semigroup on (E, &).
Let ¢t > 0 and = € R?, we have

/Edpt(:c,d:c’) h(lx)/Eh< & VdP,(z,dz') =

In addition for every A € &, P,(z, A) = [, h(z")dP,(x,dz") > 0, thus Py(x,-) is a

probability measure on E and x +— Pt(a:, A)is measurable. So (P,)¢>o is a transition
kernel on E. Furthermore, for every t, s > 0 and x € E, we have,

/
h(x >Ps+t($a dfﬂ/)

Py(x,da’) = @)

y; J
ﬂ@&@@wu%MdM

h(y)
ps(l'./ dy)pt(yv dT/)

hbﬂ\
>
=

In conclusion (F;) is a Markov semigroup on (F,E).

Exercice 2 — Thinning property.
Let (NV;)e>0 be a Poisson process of intensity A > 0 and (Xj)g>o be iid Bernoulli random
variables with parameter p € [0, 1]. Let

Nt Nt
N =" Xjand NP = "(1-Xp),
k=1 k=1

(1) Let X a Poisson random variable of parameter o > 0 and (B,),, be iid Bernoulli
random variables of parameter p independent from X, show that ¥ = Zle B, is
a Poisson random variable of parameter ap.
Let N > 0, conditionally on X = N, Y is binomial of parameter (N,p). So for
every n € {0,..., N},

oN (N
PY=nX=N)=e¢*“— (1 —p)N T,
v =nx =0 =G (V- p



Now fix n > 0, summing the above display over N > 0, obtain

PY =n)=e? (op)
n!

(2) Show that N4 and NZ are independent Poisson processes with intensity Ap and
A1 —p).
We start by proving that N4 has right continuous trajectories, stationary and
independent increments, and that N/ is a Poisson distributed random variable
with parameter Apt. It is clear that the trajectories of N4 are right continuous and
that its increments are stationary and independent (because the increments of N
are). Finally according to question 1, N/ is N/ is a Poisson distributed random
variable with parameter Apt. This ensures that N4 is Poisson process with intensity
Apt, similarly we can show that N is Poisson process with intensity A\(1 — p)t. It
remains to prove that N4 and N? are independent. To do so we can again use the
conditionning trick

P(N{ = b, NF = 1) = P(N{ =k, NZ = U|N, = k+ ) P(N, = k + )

— (’“ N l)pk(l —p)'e N/ (k + 1)

k
e (pA)F e TPA((1 = p)A)!
N k! !

= P(N/ = k)P(NP z'z).

(3) A bus station observes arrivals of buses, modeled as a Poisson process of intensity
A. Each arriving bus is either a city bus with probability p, or an intercity bus with
probability 1—p independently of other buses. What is the law of the time between
each city bus 7 each intercity bus ? Given ¢ > 0 what is the expected number of
city buses observed at time t given that we have observed n € N buses in total ?
The arrivals of city buses correspond to the process (N{');>o, which is a Poisson
process with intensity Ap. The interarrival times are independent and exponentially
distributed with parameter Ap. Similarly, the arrivals of intercity buses correspond
to the process (NZ);>o, thus the interarrival times are independent and exponen-
tially distributed with parameter A(1 — p).

According to question 1, N; = n, the number of city buses N/ follows a Binomial(n, p)
distribution. Thus, the expected number of city buses observed by time t, given
that n buses have arrived in total is np.

Exercice 3 — M/GI/> queue.

Let X = (X;):>0 be a Poisson process of intensity A > 0, we denote (J,), the jump times
of X. Let (Z,), be iid random variables, we denote G the cdf of Z; and 1/u the mean
of Z,. Consider the following model, you operate a restaurant in which the n** customer
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arrives at time .J,, and leaves at time J,, + Z,,. You want to estimate the number N; of
customers in the shop at time ¢t. Note that for every t > 0, we have

(1)

Ny = 1{J, St < Ju+ Za}.

Let t > 0, n > 0 and let U denote a uniform random variable in [0,t], define
p = P(Z; > U). Show that conditionally on X; = n, the random variable N; is
Binomial random variable of parameter (n, p).

Let Uy, ..., U, be independent uniform random variables in [0,¢] and let o be the
permutation of {1,...,n} defined almost surely by U,q)y < -+ < Us@). Con-
ditionally on X; = n, (Ji,...,J,) has the law of (U,q),...,Us@m)). Thus, still
conditionally on X; = n, we have

Nt:ZL{tg Jo + 23}

k=1

n

d
DNt < Uy + Z4)

k=1

DN 1t < Ui+ Zu).

k=1
So conditionally on X; = n, N, is a binomial random variable of parameter (n,p)
where p = P(t < Z,+U) =Pt —U < Z;) = P(U < Z;). The last inequality

following from the fact that t — U @ U.

Let t > 0 and a(t) = A fo (Z1 > z)dx, show that N(t) is a Poisson random
variable with parameter a(t).

According to the previous given k£ > 0 and n > k, we have

P(N, = k, X; = n) = e M(\t)"/n! <Z>pk(1 —p)" k.
Summing over n > k, we obtain
P(N;, = k) = e M (\tp)* /K.

This means that N; is a Poisson random variable of parameter Atp, finally p =
P(Z, >U) = 1f0 (Z1 > s)ds, thus Atp = «a(t).

Show that as ¢ — oo, N; converges in law toward a Poisson law of parameter
p=Ap

As t — oo, we have a(t) = X [[TP(Zy > s)ds = AES = A/p. It follows that,

lim P(N, = k) = ¢ PZ'

In France approximately, 1903896 new cars have been bought each year between
1967 and 2023 (source : CCFA, Comité des Constructeurs Frangais d’ Automobiles).
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Assume that the French people buy cars according to a Poisson Process of parameter
A = 1903896 per year and that there was no car bought before 1967.

(4) Assume that each car owner keeps its car for a duration uniform between 0 and 20
years. What is the expected number of cars in the French fleet in the year 1977 7
what about in the year 1987 ? and Afterward ?

If we keep the notations of the previous section, the expected number of cars in the
fleet in the year 1967+ is a(t) = A fot P(Zy > s)ds. If Z; follows a uniform random
variable in [0, 0] with b = 20, we have for every s < b, P(Z; > s)ds = 1 — s/b and
= 0 otherwise. It follows that « is constant after ¢ = b and for t < b, we have,

2

t S
) =A[ 1—2ds=A\t— —).
o) =2 [ 1= Fds == 5)

We obtain,
3
a(10) = é/\b ~ 156M
a(20) = \b/2 ~ 20M

(5) Answer the previous question now assuming that each owner keeps its car for an
exponential duration of parameter 1/10.
Similar computations yield,

t Ab
at) = )\/ exp(—2s/b)ds = ) (1— e 2/,
0



