
UNIQUENESS OF PARISI MEASURES FOR ENRICHED

CONVEX VECTOR SPIN GLASS

HONG-BIN CHEN AND VICTOR ISSA

Abstract. In the PDE approach to mean-field spin glasses, it has
been observed that the free energy of convex spin glass models could
be enriched by adding an extra parameter in its definition, and that
the thermodynamic limit of the enriched free energy satisfies a partial
differential equation. This parameter can be thought of as a matrix-valued
path, and the usual free energy is recovered by setting this parameter to
be the constant path taking only the value 0. Furthermore, the enriched
free energy can be expressed using a variational formula, which is a
natural extension of the Parisi formula for the usual free energy.

For models with scalar spins the Parisi formula can be expressed as
an optimization problem over a convex set, and it was shown in [2] that
this problem has a unique optimizer thanks to a strict convexity property.
For models with vector spins, the Parisi formula cannot easily be written
as a convex optimization problem.

In this paper, we generalize the uniqueness of Parisi measures proven
in [2] to the enriched free energy of models with vector spins when the
extra parameter is a strictly increasing path. Our approach relies on a
Gateaux differentiability property of the free energy and the envelope
theorem.
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UNIQUENESS OF PARISI MEASURES 1

1. Introduction

1.1. Preamble. In this paper, we study centered Gaussian processes HN

on (RN)D with the following covariance structure,

(1.1) EHN(σ)HN(τ) = Nξ (
στ∗

N
) ,

where ξ ∈ C∞(RD×D,R) is a fixed smooth function and where στ∗ denotes
the matrix of scalar products

(1.2) στ∗ = (σd ⋅ τd′)1⩽d,d′⩽D ∈ RD×D,

with σd = (σdi)1⩽i⩽N .

We often identify (RN)D with (RD)N and also RD×N , the set of D ×N
matrices, which makes the notation for (1.2) natural. Let SD, SD+ , and
SD++ denote the set of D × D symmetric matrices, positive semi-definite
D ×D symmetric matrices, and positive definite D ×D symmetric matrices
respectively. For a, b ∈ SD+ , we write a ⩾ b whenever a − b ∈ SD+ .

Throughout, we will assume that ξ admits a convergent power series and
is convex on SD+ . When D = 1, this setup corresponds to the usual setup for
mean-field spin glass models with scalar spins as studied in [25]. For D > 1,
this setup corresponds to mean-field spin glass models with D-dimensional
vector spins. Multi-species models [26] and the Potts model [27] are examples
of mean-field spin glass models with vector spins.

We give ourselves P1, a compactly supported probability measure on RD.
Without loss of generality, we may assume that the support is included in the
unit ball of RD. We let PN = P

⊗N
1 denote the law of an element σ ∈ (RD)N

with independent rows σi = (σdi)1⩽d⩽D ∈ RD with law P1. We are interested
in the large-N limit of

(1.3) FN(t,0) = −
1

N
E log∫ exp(

√
2tHN(σ) − tNξ (

σσ∗

N
))dPN(σ),

where t ⩾ 0. The term ξ (σσ
∗

N ) in (1.3) is introduced as a convenience

to simplify the expression of the limit; it is constant in classical cases of
interest, such as when the coordinates of σ take values in {−1,1} and ξ
depends only on the diagonal entries of its argument. In general, the second
argument of FN can be any q in the space of nondecreasing functions from
[0,1) to SD+ , subject to a mild integrability and continuity requirement; the
expression in (1.3) is with this argument chosen to be the constant path
taking only the value 0 ∈ SD+ . To explain what this space is, let us say that
a path q ∶ [0,1) → SD+ is nondecreasing if, for every u ⩽ v ∈ [0,1), we have
q(v) − q(u) ∈ SD+ . We then let

(1.4) Q = {q ∶ [0,1)→ SD
+ ∣ q is nondecreasing and càdlàg}

and we set Qp = Q ∩ L
p([0,1);SD). We postpone the precise definition of

FN(t, q) for arbitrary q ∈ Q2 to (2.4). In short, this quantity is obtained
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by adding an energy term in the exponential on the right side of (1.3) to
encode the interaction of σ with an external magnetic field, and this external
magnetic field has an ultrametric structure whose characteristics are encoded
by the path q. Therefore, we call FN(t, q) the enriched free energy.

One can check [22, Proposition 3.1] that FN(0, ⋅) does not depend on
N . This follows from the fact PN = P

⊗N
1 and that at t = 0 the N -body

Hamiltonian has the same law as N copies of the 1-body Hamiltonian. For
every q ∈ Q2, we write

(1.5) ψ(q) = F 1(0, q) = FN(0, q).

When instead PN is the uniform measure on the sphere of radius
√
N centered

at 0 in (RD)N , FN(0, ⋅) depends on N but converges to a differentiable
function of q as N → +∞ [22, Proposition 3.1]. In what follows, we focus on
models with PN = P

⊗N
1 .

When ξ is convex on SD+ , the limiting value of FN(t,0) is known, this
is the celebrated Parisi formula. The Parisi formula was first conjectured
in [29] using a sophisticated non-rigorous argument known as the replica
method. The convergence of the free energy as N → +∞ was rigorously
established in [17] in the case of the so-called Sherrington-Kirkpatrick model
which corresponds to D = 1, ξ(x) = β2x2 for β > 0, and P1 = Unif({−1,1}).
The Parisi formula for the Sherrington-Kirkpatrick model was then proven
in [16, 31]. This was extended to the case D = 1, P1 = Unif({−1,1}) and
ξ(x) = ∑p⩾1 β2pxp with βp ⩾ 0 in [25]. Some models with D > 1 such as multi-
species models, the Potts model, and a general class of models with vector
spins were treated in [26, 27, 28], under the assumption that ξ is convex on
RD×D. Finally, the case D > 1 was treated in general in [10] assuming only
that ξ is convex on the set of positive semi-definite matrices. In addition,
following [10, 24], the Parisi formula is extended to limN→+∞ FN(t, q) for
q ∈ Q2. The following version of the Parisi formula is [10, Proposition 8.1].
Throughout, under the assumption that ξ is convex on SD+ , for every t ⩾ 0
and q ∈ Q2, we set

f(t, q) = lim
N→∞

FN(t, q).(1.6)

We view f as a real-valued function on [0,+∞) ×Q2 and we often consider
f restricted to a smaller domain. We set

L∞⩽1 = {p ∶ [0,1)→ SD ∣ ∣p(u)∣ ⩽ 1 almost everywhere} ,(1.7)

θ(x) = x ⋅ ∇ξ(x) − ξ(x).(1.8)

Theorem 1.1 (Generalized Parisi formula [10]). If ξ is convex on SD+ , then,
at every t ⩾ 0 and q ∈ Q2, the limit of the free energy FN(t, q) is given by

(1.9) f(t, q) = sup
p∈Q∩L∞

⩽1

{ψ(q + t∇ξ ○ p) − t∫
1

0
θ(p(u))du} .
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Setting q = 0 in (1.9), we recover the usual Parisi formula as presented in
[25] for example. Letting ξ∗ ∶ RD×D → R∪ {+∞} denote the convex dual of ξ
with respect to the cone SD+ , that is ξ∗ is the function defined by

(1.10) ξ∗(a) = sup
b∈SD

+

{a ⋅ b − ξ(b)} ,∀a ∈ RD×D,

the function θ can be rewritten as θ(x) = ξ∗(∇ξ(x)) (see Lemma 3.2 below).

Definition 1.2 (Parisi measures). We say that a path p ∈ Q∩L∞⩽1 is a Parisi
measure at (t, q) when it is an optimizer in the right-hand side of (1.9).

Usually in the literature, the term Parisi measure refers to the law of p(U)
where U is a uniform random variable in [0,1) and p is an optimizer in the
right-hand side of (1.9). Here since we work in the space of paths rather
than in the space of probability measures, we choose to use the term Parisi
measure to refer to p directly.

Studying the set of Parisi measures is an important question in itself since
they are the optimizers in the fundamental Parisi formula. Their study
is further motivated by the fact that they describe the limit in law of the
overlap matrix under the expected Gibbs measure, that is the limit in law
of στ∗/N as N → +∞ where σ and τ are two independent random variables
drawn from the expected Gibbs measure.

A first rigorous proof of the uniqueness of Parisi measures at (t, 0) for scalar
spins (i.e. D = 1) was put forward in [32] but relied on genericity assumptions
on ξ. In [32], the function ξ is written ξ(x) = ∑p β

2
px

2p. Assuming that for
every p, βp ≠ 0, the author shows the uniqueness of Parisi measures by
differentiating the limit free energy and the Parisi formula with respect to
each βp. In [2], the uniqueness of Parisi measures at (t,0) is proven in the
case of scalar spins (i.e. D = 1) without any further assumptions on ξ. In
Appendix A we give some key ideas of the proof of the uniqueness of Parisi
measures at (t,0) given in [2] in the context of scalar spins. We also show
that thanks to a convexity property from optimal transport, with minimal
adaptation, this proof also yields the uniqueness of Parisi measures at (t, q)
for every q ∈ Q when D = 1. In addition, we explain why those arguments do
not carry over easily to models with vector spins.

1.2. Main result. Let Id be the D ×D identity matrix. Recall that for
a, b ∈ SD satisfying a − b ∈ SD+ , we write a ⩾ b. We can view ∇ξ as an
RD×D-valued function. Moreover, we assume that ∇ξ(SD) ⊆ SD. Because
(1.1) holds, ξ enjoys some extra properties. For example as a consequence of
[23, Propositions 6.4 & 6.6], we can assume without loss of generality that ξ
satisfies the following monotonicity:

a, b ∈ SD
+ , a ⩾ b Ô⇒ ξ(a) ⩾ ξ(b).(1.11)

a, b ∈ SD
+ , a ⩾ b Ô⇒ ∇ξ(a) ⩾ ∇ξ(b).
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Throughout, we will also assume that ξ is superlinear on SD+ , which means

∀M > 0, ∃R > 0 ∶ inf
x∈SD

+ , ∣x∣⩾R
ξ(x)/∣x∣ ⩾M.(1.12)

Also, recall that we assume that ξ is convex on SD+ and admits an absolutely
convergent power series expansion. These conditions along with the existence
ofHN are satisfied by a wide range of interactions. We refer to [10, Section 1.5]
for the detail.

For every a ∈ SD, let λmax(a) and λmin(a) be the largest and smallest
eigenvalues of a, respectively. For a ∈ SD++, we define

(1.13) Ellipt(a) =
λmax(a)

λmin(a)
.

We say that q ∈ Q↑ when q ∈ Q2, q(0) = 0 and there exists a constant c > 0
such that for every u < v,

(1.14) q(v) − q(u) ⩾ c(v − u)Id and Ellipt(q(v) − q(u)) ⩽
1

c
.

Throughout, we set

Q∞,↑ = Q∞ ∩Q↑.(1.15)

In this paper, we study the uniqueness of Parisi measures at (t, q) for q ∈ Q2.
We will show the following theorem.

Theorem 1.3 (Uniqueness of Parisi measures). Assume that ξ is strictly
convex on SD+ and is superlinear on SD+ . For every (t, q) ∈ (0,+∞) ×Q∞,↑,
there is a unique Parisi measure at (t, q) and it is given by p = ∇qf(t, q).

Here, ∇qf(t, q) denotes the Gateaux derivative of f(t, ⋅) at q, see Defini-
tion 1.4 below. Note that Theorem 1.3 does not include the case q = 0, which
is arguably the most interesting. The proof of Theorem 1.3 is in the style
of [32] and relies on the Gateaux differentiability of the limit free energy on
(0,+∞) ×Q∞,↑ as proven in [10, Proposition 8.1].

Definition 1.4 (Gateaux differentiability). Let (E, ∣ ⋅ ∣E) be a Banach space
and denote by ⟨ ⋅ , ⋅ ⟩E the canonical pairing between E and its dual E∗. Let
G be a subset of E and, for every q ∈ G, we define

Adm(G, q) = {κ ∈ E∣∃r > 0, ∀t ∈ [0, r], q + tκ ∈ G},

to be the set of admissible directions at q. A function h ∶ G→ R is Gateaux
differentiable at q ∈ G if the following two conditions hold:

(1) For every κ ∈ Adm(G, q), the following limit exists

h′(q, κ) = lim
t↓0

h(q + tκ) − h(q)

t
.

(2) There is a unique y∗ ∈ E∗ such that for every κ ∈ Adm(G, q),

h′(q, κ) = ⟨y∗, κ⟩E .
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In such a case, we call y∗ the Gateaux derivative of h at q and we denote it
∇h(q).

We close the introduction with a few remarks related to Theorem 1.3.
First, as a consequence of the cavity computations performed in [10] the
unique Parisi measure encodes the limit law of the overlap.

Remark 1.5 (Limit law of the overlap). If ξ satisfies the hypotheses of
Theorem 1.3, and we further assume that ξ is strictly convex on RD×D or
that ξ is strongly convex on SD+ , then it follows from [10, Proposition 8.8]
and [10, Theorem 1.4] respectively, that for every (t, q) ∈ (0,+∞) ×Q∞,↑, the
law of the overlap matrix στ∗/N under the expected Gibbs measure converges
as N → +∞ to the law of p(U) where p is the unique Parisi measure at (t, q)
and U is a uniform random variable in [0,1).

Furthermore, it follows from [9, Proposition 5.16] that when q ∈ Q∞,↑ the
unique Parisi measure is strictly increasing.

Remark 1.6 (∞-RSB at q ∈ Q∞,↑). Assume that ξ is as in Theorem 1.3

and that the support of P1 sans RD. At every (t, q) ∈ (0,+∞) ×Q∞,↑, the
unique Parisi measure p is strictly increasing on [0,1) (i.e. p(v) ≠ p(u) for
every distinct v, u ∈ [0,1).

Finally, since the limit free energy is Lipschitz on R+ ×Q1 [10, Propo-
sition 5.1] and Q∞,↑ is dense in Q1, we have the following perturbative
result.

Remark 1.7 (Uniqueness up to small perturbation). There is a constant
C > 0 such that, for every t > 0 and q ∈ Q1,

∣f(t,0) − f(t, q)∣ ⩽ C ∣q∣L1 .

Therefore, for every ε > 0, we can find q ∈ Q∞,↑ such that f(t, q) differs from
f(t,0) by ε uniformly in t. Hence, we can roughly state that, in a convex
vector spin glass model, up to an arbitrarily small perturbation the Parisi
measure is unique.

To conclude, we point out the following technical considerations about
multi-species models.

Remark 1.8 (Adaption of results to multi-species models). We refer to [8]
for a general setup of a multi-species spin glass model. If the species population
ratios are not rational, then a multi-species model is not equivalent to a
vector spin glass model as encoded here. So, the results here are not directly
applicable. However, they can be adapted straightforwardly using the same
arguments and replacing results cited from [10] by corresponding results in [8].

1.3. Organization of the paper. In Section 2 we give a precise definition
of the enriched free energy. In Section 3 we prove a modified version of the
Hopf–Lax formula derived in [10, Corollary 8.2], see (3.2) in Theorem 3.1.
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In Section 4 we use this modified Hopf-Lax formula to prove Theorem 1.3.
In Section 5, as an application of Theorem 1.3, we upgrade the Gateaux
differentiability result [10, Proposition 8.1] to a Fréchet differentiability result,
see Definition 5.1 and Theorem 5.2. Finally, in Section 6, we show that
Theorem 1.3 implies uniqueness in the critical point representation of [10].
In Appendix A we show the uniqueness of Parisi measures at (t, q) for q ∈ Q
and D = 1 using a different argument relying on the strict convexity property
of [2]. We also explain why this argument does not carry over easily when
D > 1.

Acknowledgments. The second author thanks Jean-Christophe Mourrat
for introducing the problem of the uniqueness of Parisi measures for the
enriched free energy to him and for many helpful comments and suggestions.
The authors also thank Wei-Kuo Chen and Dmitry Panchenko for useful
feedback on preliminary versions of this work. The first author is funded by
the Simons Foundation.

2. Definition of the enriched free energy

The goal of this section is to give a precise definition of the enriched free
energy appearing in Theorem 1.1 and Theorem 1.3. We start by giving a
definition of FN(t, q) for a piecewise constant q ∈ Q. We recall that, for
A,B ∈ RD×D, we write A ⩽ B when B −A ∈ SD+ ; and A < B when A ⩽ B and
A ≠ B. Let K ∈ N and let q ∈ Q be a path of the form

(2.1) q =
K

∑
k=0

qk1[ζk,ζk+1)

where

0 = q−1 ⩽ q0 < q1 < ⋅ ⋅ ⋅ < qK ,(2.2)

0 = ζ0 < ζ1 < ⋅ ⋅ ⋅ < ζK < ζK+1 = 1.(2.3)

The construction of FN(t, q) involves a random probability measure with
ultrametric properties called the Poisson–Dirichlet cascade. We briefly
introduce this object and refer to [25, Section 2.3] for a more detailed
explanation. We define

A = N0
∪N1

∪ ⋅ ⋅ ⋅ ∪NK

with the understanding that N0 = {∅}. We think of A as a tree rooted at ∅
such that each vertex of depth k <K has countably many children. For each
k <K and α = (n1, . . . , nk) ∈ Nk the children of α are the vertices of the form

αn = (n1, . . . , nk, n) ∈ Nk+1.

The depth of α = (n1, . . . , nk) is denoted by ∣α∣ = k and for every l ⩽ k, we
write

α∣l = (n1, . . . , nl)
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to denote the ancestor of α at depth l. Given two leaves α,β ∈ NK , we denote
by α∧β the generation of the most recent common ancestor of α and β, that
is

α ∧ β = sup{k ⩽K ∶ α∣k = β∣k}.
We attach an independent Poisson process to each non-leaf vertex α ∈ A with
intensity measure.

x−1−ζ∣α∣+1dx.
We order increasingly the points of those Poisson processes and denote them
by uα1 ⩾ uα2 ⩾ . . . . For every α ∈ NK , we set wα =∏

K
k=1 uα∣k and define

vα =
wα

∑β∈NK wβ
.

Definition 2.1 (Poisson–Dirichlet cascade). The Poisson–Dirichlet cascade
associated to (ζk)1⩽K+1 in (2.3) is the random probability measure on NK

(the leaves of the tree A) whose weights are given by (vα)α∈NK .

Let (vα)α∈NK be the Poisson–Dirichlet cascade associated to (ζk)1⩽K+1 in
(2.3), chosen to be independent ofHN . Let (zβ)β∈A be a family of independent

RD×N -valued Gaussian vectors with independent standard Gaussian entries.
We choose (zβ)β∈A independent of (vα)α∈NK and HN . For every α ∈ NK , we
set

wq
(α) =

K

∑
k=0
(qk − qk−1)1/2zα∣k

with (qk)0⩽k⩽K given in (2.2). The centered Gaussian process (wq(α))α∈NK

is RD×N -valued and has the following covariance structure

E [wq
(α)wq

(α′)∗] = Nqα∧α′ .

Henceforth, we write R+ = [0,+∞). For t ∈ R+ and q given in (2.1), we define
the enriched Hamiltonian

Ht,q
N (σ,α) =

√
2tHN(σ) −Ntξ (

σσ∗

N
) +
√
2wq
(α) ⋅ σ − σ ⋅ qKσ,

where HN is given as in (1.1). And we define

(2.4) FN(t, q) = −
1

N
E log∫ ∑

α∈NK

exp (Ht,q
N (σ,α)) vαdPN(σ).

Recall Q from (1.4) and Qp = Q ∩ L
p([0,1);SD). The expression in the

previous display is Lipschitz with respect to (t, q). More precisely for every
t1, t2 ∈ R+ every piecewise constant q1, q2 ∈ Q, as proven in [10, Proposi-
tion 3.1], we have

(2.5) ∣FN(t1, q1) − FN(t2, q2)∣ ⩽ ∣q1 − q2∣L1 + ∣t1 − t2∣ sup
∣a∣⩽1
∣ξ(a)∣.

As a consequence, the free energy admits a unique Lipschitz extension
to R+ × Q1. The relevance of the enriched free energy is encapsulated
in Theorem 2.2 below, which is extracted from [10, Corollary 8.7]. In
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other words, this result states that the enriched free energy is the unique
solution of some partial differential equation. This approach was explored
in [15], in the replica-symmetric regime, and was later extended to various
settings [1, 3, 4, 5, 6, 13, 21, 22, 23, 24].

Recall the notion of Gateaux differentiability in Definition 1.4, the defini-
tion of Q∞,↑ in (1.14) and (1.15), and lastly the limit free energy f in (1.6)

(which exists when ξ is convex on SD+ ).
Given a Gateaux differentiable functions h ∶ Q∞,↑ ⊆ L2 → R, we have for

q ∈ Q∞,↑, ∇h(q) ∈ L2. In particular, provided that the integral converges, the

following quantity is well-defined ∫
1
0 ξ(∇h(q)(u))du, where u ∈ [0,1) is the

variable making ∇h(q) an element of L2 = L2([0,1)). Hence, we write for
short

∫ ξ(∇h(q)) = ∫
1

0
ξ(∇h(q)(u))du.(2.6)

Theorem 2.2 (The free energy solves a PDE [10]). Assume that ξ is
convex on SD+ . The limit free energy f is Gateaux differentiable at every
(t, q) ∈ (0,+∞) ×Q∞,↑ and satisfies

(2.7) ∂tf − ∫ ξ(∇qf) = 0

everywhere on (0,+∞) ×Q∞,↑. Moreover, we have

∇qf(t, q) ∈ Q ∩L
∞
⩽1 ⊆ Q2, ∀(t, q) ∈ (0,+∞) ×Q∞,↑.(2.8)

The quantity ∫ ξ(∇qf) is understood as in (2.6) and L∞⩽1 is defined in (1.7).

Recall ψ from (1.5) and thus we have

f(0, ⋅) = ψ, on Q2 ⊃ Q∞,↑.(2.9)

According to [11, Theorem 1.1], the Cauchy problem (2.7) on (0,+∞)×Q∞,↑
with initial condition f(0, ⋅) = ψ admits a unique solution (in the viscosity
sense). Therefore, Theorem 2.2 can be seen as a characterization of the limit
free energy. A variational formula for f analogous to the Parisi formula
follows from the Hopf–Lax representation [11, Theorem 1.1 (2)]. It has been
conjectured in [22] that Theorem 2.2 is the right way of characterizing the
limit free energy for models with nonconvex ξ. In particular, the limit of the
usual free energy FN(t,0) (without enrichment) as in (1.3) is conjectured
to be the value at (t,0) of the unique solution of (2.7) regardless of the
convexity of ξ [22, Conjecture 2.6]. Partial results toward a proof of this
conjecture have been obtained in [21, 23, 10, 19]. Because of this, we believe
that the enriched free energy is an interesting object for understanding both
convex and nonconvex spin glasses and this is why we choose to study it in
the remainder of this paper.
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3. Modified Hopf–Lax representation of the limit free energy

Henceforth, we always assume that ξ is convex on SD+ and we let f =
limN→+∞ FN be the pointwise limit on R+×Q2 of the enriched free energy (as
in (1.6)). Recall that f is jointly Gateaux differentiable on (0,+∞) ×Q∞,↑.
We also simplify our notation by writing ∇f = ∇qf for the derivative in the
second coordinate.

Our proof of Theorem 1.3 uses the differentiability of the limit free energy to
apply the envelope theorem. At the heuristic level, this theorem encapsulates
the following phenomenon. Consider h ∶ R→ R and k ∶ R ×R→ R such that

(3.1) h(x) = sup
x′∈R

k(x,x′).

Let x ∈ R and let x′ ∈ R be a maximizer in (3.1). Assume that h is differen-
tiable at x and k is differentiable at (x,x′). Then formally we have,

d

dx
h(x) = ∂xk(x,x

′
) + ∂x′k(x,x

′
)
d

dx
x′,

Since x′ maximizes k(x, ⋅) we have ∂x′k(x,x
′) = 0 and we are left with

d

dx
h(x) = ∂xk(x,x

′
).

When ∂xk(x, ⋅) is injective, this computation shows that there is a unique
optimizer x′. A rigorous proof of the envelope theorem for functions defined
on Rd can be found in [13, Theorem 2.21].

To apply the envelope theorem to f(t, q), we will not use the Parisi
formula (1.9) but a Hopf–Lax type formula (see (3.2) below). A closely
related variational formula has already been derived in [10, Corollary 8.2],
but it is different in nature. In [10, Corollary 8.2] the dependence in q of the
formula is through ψ while in (3.2) it is trough ξ∗.

Theorem 3.1 (Hopf–Lax representation). Assuming that ξ is strictly convex
on SD+ and is superlinear on SD+ , we have that, for every (t, q) ∈ (0,+∞) ×
Q∞,↑,

(3.2) f(t, q) = sup
q′∈Q∞

{ψ(q′) − t∫ ξ∗ (
q′ − q
t
)} .

Here for ϕ ∶ SD → R and κ ∈ L2([0,1);SD) we write for short

∫ ϕ(κ) = ∫
1

0
ϕ(κ(u))du.

Before starting the proof of Theorem 3.1, we will adapt two classical results
from convex duality to our context in Lemmas 3.2 and 3.3 below. Recall the
definition of θ in (1.8).

Lemma 3.2. Assume that ξ is convex on SD+ , then we have

θ(x) = ξ∗(∇ξ(x)), ∀x ∈ SD
+ .
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Proof. For every x ∈ SD+ , it follows from the definition of ξ∗ in (1.10) that

θ(x) = ∇ξ(x) ⋅ x − ξ(x)

⩽ sup
x′∈SD

+

{∇ξ(x) ⋅ x′ − ξ(x′)}

= ξ∗(∇ξ(x)).

Conversely, for any x′ ∈ SD+ , the convexity of ξ on SD+ implies that for every
λ ∈ (0,1],

ξ(λx′ + (1 − λ)x) − ξ(x)
λ

⩽ ξ(x′) − ξ(x).

Taking λ→ 0, we get

∇ξ(x) ⋅ (x′ − x) ⩽ ξ(x′) − ξ(x).

Rearranging, we obtain

∇ξ(x) ⋅ x′ − ξ(x′) ⩽ ∇ξ(x) ⋅ x − ξ(x).

Taking the supremum over x′ ∈ SD+ , we get ξ∗(∇ξ(x)) ⩽ θ(x). □

Lemma 3.3. Assume that ξ is convex on SD+ and is superlinear on SD+ , then
ξ∗ is locally Lipschitz on RD×D.

Proof. For every y ∈ RD×D, using the superlinearity of ξ as in (1.12), we have
for x ∈ SD+ with ∣x∣ large enough

x ⋅ y − ξ(x) ⩽ ∣x∣(∣y∣ − ξ(x)/∣x∣) ⩽ 0.

Thus, for R > 0 large enough,

ξ∗(y) = sup
x∈SD

+ , ∣x∣⩽R
{x ⋅ y − ξ(x)} < +∞

Hence ξ∗ is finite on RD×D. Since ξ∗ is also convex, we conclude from a
classical result [30, Theorem 10.4] that ξ∗ is locally Lipschitz. □

Proof of Theorem 3.1. It is clear from Theorem 1.1 and Lemma 3.2 that

(3.3) f(t, q) ⩽ sup
q′∈Q∞

{ψ(q′) − t∫ ξ∗ (
q′ − q
t
)} .

Let us prove the converse bound. We fix any q′ ∈ Q∞,↑ and set

γs = q
′
+
s

t
(q − q′), ∀s ∈ [0, t].

From the definition of Q∞,↑ in (1.15), we have γs ∈ Q∞,↑ for every s ∈
[0, t]. According to Theorem 2.2, f is jointly Gateaux differentiable on
(0,+∞) ×Q∞,↑. Hence, for every s ∈ (0, t),

d

ds
f(s, γs) = ∂tf(s, γs) + ⟨γ̇s,∇qf(s, γs)⟩L2

(2.7)
= ∫

1

0
ξ(∇f(s, γs))(u)du + ⟨γ̇s,∇f(s, γs)⟩L2 .
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By definition of ξ∗ in (1.10) and ∇f(s, γs) ∈ Q2 due to (2.8), we have for
every u ∈ [0,1),

ξ∗(−γ̇s(u)) ⩾ −γ̇s(u) ⋅ ∇f(s, γs)(u) − ξ(∇f(s, γs)(u))

which along with the previous display implies

d

ds
f(s, γs) ⩾ −∫

1

0
ξ∗(−γ̇s(u))du = −∫

1

0
ξ∗ (

q′(u) − q(u)
t

)du.

Integrating this with respect to s and using f(0, γ0) = ψ(q
′) due to (2.9), we

obtain,

f(t, q) ⩾ ψ(q′) − t∫
1

0
ξ∗ (

q′(u) − q(u)
t

)du.

Since q′ is arbitrary, we get

f(t, q) ⩾ sup
q′∈Q∞,↑

{ψ(q′) − t∫
1

0
ξ∗ (

q′(u) − q(u)
t

)du} .

To conclude, we observe that the set

{u↦ ucId +
K

∑
k=1

qk1[ k−1
K

, k
K
) ∣ c > 0; q1 = 0; q2, . . . qk ∈ S

D
++}

is dense inQ∞ with respect to L1-convergence and is contained inQ∞,↑. Since
ξ∗ is locally Lipschitz as a consequence of Lemma 3.3 and ψ is continuous in
L1 due to (1.5) and (2.5), by a density argument, we obtain

f(t, q) ⩾ sup
q′∈Q∞

{ψ(q′) − t∫
1

0
ξ∗ (

q′(u) − q(u)
t

)du} .

This together with (3.3) completes the proof. □

4. Uniqueness of Parisi measures for vector spins

As discussed in detail at the beginning of Section 3, to prove Theorem 1.3
we use the envelope theorem. To do so, we will again need to adapt a classical
result from convex duality for the differentiability of ξ∗ (see Lemma 4.1)
taking into account that the supremum in the definition of ξ∗ in (1.10) is
taken over SD+ instead of the whole space. We will also need to show that
even though Q2 has an empty interior, Q∞,↑ satisfies some sort of openness
condition. More precisely, we are going to show that given q ∈ Q∞,↑ and a

Lipschitz function κ ∶ [0,1) → SD, one has q + εκ ∈ Q∞,↑ for every ϵ small
enough (see Lemma 4.2).

Lemma 4.1. Assume that ξ is strictly convex on SD+ and is superlinear on
SD+ . Then, ξ∗ is continuously differentiable on SD. In addition, we have

∇ξ∗(∇ξ(x)) = x, ∀x ∈ SD
+ .
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Proof. Since ξ∗ is convex, it is enough (e.g. [30, Corollary 25.5.1]) to show
that ξ∗ is differentiable on SD to prove that ξ∗ is continuously differentiable.
We fix any y ∈ SD and want to show that ξ∗ is differentiable at y. We
consider the subdifferential

(4.1) ∂ξ∗(y) = {x ∈ SD ∣ ∀y′ ∈ SD, ξ∗(y′) − ξ∗(y) ⩾ x ⋅ (y′ − y)} .

According to Lemma 3.3, ξ∗ is finite at y. Then, it follows from [14, Propo-
sition 5.3], if ∂ξ∗(y) = {x} for some x ∈ SD, then ξ∗ is differentiable at y
with ∇ξ∗(y) = x. We are going to show that ∂ξ∗(y) is contained in the set
of maximizers of the strictly concave functional, x↦ x ⋅ y − ξ(x).

Step 1. We show that ∂ξ∗(y) ⊆ SD+ .
Recall (e.g. [18, Theorem 7.5.4] that given x ∈ SD, we have x ∈ SD+ if and
only if

x ⋅ a ⩾ 0, ∀a ∈ SD
+ .

Let x ∈ ∂ξ∗(y), for every a ∈ SD+ we let y′ = y − a. We have

ξ∗(y′) = sup
x′∈SD

+

{x′ ⋅ y′ − ξ(x′)}

⩽ sup
x′∈SD

+

{x′ ⋅ y − ξ(x′)}

= ξ∗(y).

Thus,

x ⋅ a = x ⋅ (y − y′)
(4.1)
⩾ ξ∗(y) − ξ∗(y′) ⩾ 0,

which proves that x ∈ SD+ .
Step 2. We show that ξ∗(y) ⩽ x ⋅ y − ξ(x) for every x ∈ ∂ξ∗(y) and that this
implies that ξ∗ is differentiable at y.

Fix any x ∈ ∂ξ∗(y). For every y′ ∈ SD+ , we have

x ⋅ y − ξ∗(y)
(4.1)
⩾ x ⋅ y′ − ξ∗(y′).

According to Step 1, we have x ∈ SD+ , so by the biconjugation theorem on SD+
[12, Theorem 2.2] (for which we need the convexity of ξ and the monotonicity
of ξ in (1.11)) we have

ξ(x) = ξ∗∗(x) = sup
y′∈SD

+

{x ⋅ y′ − ξ∗(y′)} .

Therefore, from the previous two displays, we obtain

x ⋅ y − ξ∗(y) ⩾ ξ(x),

which is the desired inequality. As a consequence, we have x = x0 where x0 is
the unique maximizer of the strictly concave function x′ ↦ x′ ⋅ y − ξ(x) over
SD+ . Since x ∈ ∂ξ∗(y) is arbitrary, we get ∂ξ∗(y) = {x0}. Hence, as explained
in the beginning, we conclude that ξ∗ is differentiable at y with ∇ξ∗(y) = x0.
Step 3. We show that for every x ∈ SD+ , ∇ξ∗(∇ξ(x)) = x.
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From Lemma 3.2, we know that

ξ∗(∇ξ(x)) = x ⋅ ∇ξ(x) − ξ(x).

Thus, x is the maximizer of the strictly concave functional x′ ↦ x′ ⋅ ∇ξ(x) −
ξ(x′) over SD+ . Using the last part of Step 2 with y substituted with ∇ξ(x),
we get ∇ξ∗(∇ξ(x)) = x, which completes the proof. □

Recall the definition of Ellipt(a) in (1.13) and those of λmax(a) and λmin(a)
above (1.13). It follows from Weyl’s inequalities that λmax and λmin are
respectively sub-additive and super-additive. Therefore, given two symmetric
matrices a, b ∈ SD such that a+ b ∈ SD++, λmax(a)+λmax(b) ⩾ 0 and λmin(a)+
λmin(b) > 0, we have

(4.2) Ellipt(a + b) ⩽
λmax(a) + λmax(b)

λmin(a) + λmin(b)
.

Lemma 4.2. Let κ ∶ [0,1)→ SD be a Lipschitz function such that κ(0) = 0
and q ∈ Q∞,↑. We have q + εκ ∈ Q∞,↑ for ε > 0 small enough.

Proof. Recall that we write a ⩾ b if a, b ∈ SD satisfies a − b ∈ SD+ . Since κ is
Lipschitz, there is a constant L > 0 such that

κ(v) − κ(u) ⩽ L∣u − v∣Id, ∀v, u ∈ [0,1).(4.3)

This implies that, for every v, u ∈ [0,1), we have

λmax(κ(v) − κ(u)), λmin(κ(v) − κ(u)) ∈ [−L(v − u), L(v − u)].(4.4)

The definition of Q∞,↑ in (1.15) and (1.14) gives a constant c > 0 such that

(4.5) q(v) − q(u) ⩾ c(v − u)Id and Ellipt(q(v) − q(u)) ⩽ c−1.

Fixing u < v, we have

(q(v) + εκ(v)) − (q(u) + εκ(u))
(4.3)(4.5)
⩾ c(v − u)Id −Lε(v − u)Id

= (c −Lε)(v − u)Id.
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We also have

Ellipt((q(v) + εκ(v)) − (q(u) + εκ(u)))

(4.2)(4.4)
⩽

λmax(q(v) − q(u)) +Lε∣u − v∣

λmin(q(v) − q(u)) −Lε∣u − v∣

(4.5)
⩽

c−1(λmin(q(v) − q(u)) −Lε∣u − v∣) + (c
−1 + 1)Lε∣u − v∣

λmin(q(v) − q(u)) −Lε∣u − v∣

⩽ c−1 +
(c−1 + 1)Lε∣u − v∣

λmin(q(v) − q(u)) −Lε∣u − v∣

(4.5)
⩽ c−1 +

(c−1 + 1)Lε∣u − v∣
c∣u − v∣ −Lε∣u − v∣

⩽ c−1 +
(c−1 + 1)Lε
c −Lε

.

Furthermore, since q ∈ L∞ and κ is Lipschitz, it is clear that q+εκ is bounded.
Since κ(0) = 0 it is also clear that (q + εκ)(0) = 0. Now, comparing these and
the above two displays with the definitions in (1.14) and (1.15), we conclude
that q + εκ ∈ Q∞,↑ for sufficiently small ε. □

Proof of Theorem 1.3. For brevity, we write

Ht(ρ, ρ
′
) = ψ(ρ′) − t∫ ξ∗ (

ρ′ − ρ
t
) , ∀ρ, ρ′ ∈ Q∞.

Then, using this notation and Lemma 3.2, we can rewrite the Parisi for-
mula (1.9) in Theorem 1.1 as

f(t, q) = sup
p∈Q∩L∞

⩽1

Ht (q, q + t∇ξ ○ p) .(4.6)

We fix (t, q) ∈ (0,+∞) ×Q∞,↑. Let p ∈ Q∞ be a Parisi measure (see Defini-
tion 1.2) at (t, q). Set q′ = q + t∇ξ(p). We have f(t, q) =Ht(q, q

′), so q′ is a
maximizer in the right-hand side of (3.2). Let κ ∶ [0, 1)→ SD be a Lipschitz
function with κ(0) = 0, we have

Ht(q + εκ, q
′) −Ht(q, q

′)
ε

= −
1

ε
∫ tξ∗ (

q′ − q − εκ
t

) − tξ∗ (
q′ − q
t
) .

The integral on the right-hand side is ∫ = ∫
1
0 du over the parameter of paths.

According to Lemma 4.1, the function ξ∗ is continuously differentiable on
SD. In particular, ξ∗ is locally Lipschitz and we can apply the dominated
convergence theorem in the previous display to discover that

lim
ε↓0

Ht(q + εκ, q
′) −Ht(q, q

′)
ε

= ⟨∇ξ∗ (
q′ − q
t
) , κ⟩

L2

.
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By Lemma 4.2, we have q + εκ ∈ Q∞,↑ for every ε > 0 small enough. Due
to (4.6), we have f(t, q + εκ) ⩾Ht(q + εκ, q

′), therefore
f(t, q + εκ) − f(t, q)

ε
⩾

Ht(q + εκ, q
′) −Ht(q, q

′)
ε

.

By Theorem 2.2, f(t, ⋅) is Gateaux differentiable (see Definition 1.4) at q.
Letting ε→ 0 in the previous display, we obtain

⟨∇f(t, q), κ⟩L2 ⩾ ⟨∇ξ∗ (
q′ − q
t
) , κ⟩

L2

.

Since κ is an arbitrary Lipschitz function vanishing at u = 0 and those

functions are dense in L2, this yields ∇f(t, q) = ∇ξ∗ ( q
′−q
t ). In addition,

according to Lemma 4.1, we have

∇ξ∗ (
q′ − q
t
) = ∇ξ∗(∇ξ(p)) = p.

So in conclusion, p = ∇f(t, q). □

5. Fréchet differentiability of the limit free energy

Finally, as an application of Theorem 1.3 we will upgrade the Gateaux
differentiability result of [10, Proposition 8.1] to a Fréchet differentiability
result.

Definition 5.1 (Fréchet differentiability). Let (E, ∣ ⋅ ∣E) be a Banach space
and denote by ⟨ ⋅ , ⋅ ⟩E the canonical pairing between E and E∗. Let G be a
subset of E and q ∈ G, a function h ∶ G→ R is Fréchet differentiable at q ∈ G
if there exists a unique y∗ ∈ E∗ such that the following holds:

lim
q′→q
q′∈G

h(q′) − h(q) − ⟨y∗, q′ − q⟩E
∣q′ − q∣E

= 0.

In such a case, we call y∗ the Fréchet derivative of h at q and we denote it
∇h(q).

When a function h ∶ G→ R is Fréchet differentiable at every, q ∈ G we say
that h is Fréchet differentiable everywhere on G.

Theorem 5.2 (Fréchet differentiability of the free energy). Assume that ξ is
convex on SD+ and is superlinear on SD+ . The limit free energy f as in (1.6)
is Fréchet differentiable everywhere on (0,+∞) ×Q∞,↑.

Recall that from Theorem 2.2 which is extracted from [10] that the Gateaux
derivative of f satisfy

∂tf − ∫ ξ(∇qf) = 0,

everywhere on (0,+∞) ×Q∞,↑. Since the Gateaux and Fréchet derivatives
coincide when they exist, this partial differential equation can be understood
in the Fréchet sense as well.
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Proof of Theorem 5.2. In this proof, for clarity, we fix t ∈ (0,+∞) and only
show that f(t, ⋅) is Fréchet differentiable at every q ∈ Q∞,↑. The proof of
the joint differentiability is the same but with more cumbersome notations,
which we choose to omit here. For ρ ∈ Q2 and ρ′ ∈ Q∞, we write

Pt(ρ, ρ
′
) = ψ(ρ + t∇ξ(ρ′)) − t∫ θ(ρ′).

Before proceeding, we record some properties of Pt. According to [10,
Corollary 5.2], ψ is Fréchet differentiable on Q2. Therefore, Pt(⋅, ρ

′) is
Fréchet differentiable at every ρ ∈ Q2. We denote by ∇ρPt(ρ, ρ

′) its derivative
at ρ, which has the expression:

∇ρPt(ρ, ρ
′
) = ∇ψ(ρ + t∇ξ(ρ′)).

Also, [10, Corollary 5.2] gives that ∇ψ is Lipschitz in L2. Using this and the
smoothness of ξ, there is a constant C > 0 such that

∣∇ρPt(ρ1, ρ
′
1) −∇ρPt(ρ2, ρ

′
2)∣ ⩽ C ∣ρ1 − ρ2∣L2 +Ct ∣ρ

′
1 − ρ

′
2∣L2(5.1)

for every ρ1, ρ2 ∈ Q2 and ρ′1, ρ
′
2 ∈ Q ∩ L

∞
⩽1. Notice that the boundedness on

ρ′1 and ρ′2 is needed here.

According to Theorem 1.1, we have

f(t, q) = sup
p∈Q∞

Pt(q, p).

Let (qn)n be any sequence in Q∞,↑∖{q} such that qn → q in L2. Let pn ∈ Q∞
be the unique Parisi measure at (t, qn) given by Theorem 1.3. The theorem
also gives pn = ∇f(t, qn) ∈ Q ∩ L

∞
⩽1. By [10, Lemma 3.4], thanks to the

monotonicity and boundedness of pn uniform in n, the sequence (pn)n is
pre-compact in L2. Let p be a subsequential limit of (pn)n. Clearly, we still
have p ∈ Q ∩L∞⩽1. Passing to the limit in f(t, qn) =Pt(qn, pn), we discover
that p is a Parisi measure at (t, q). Since Theorem 1.3 ensures that such p
is unique, we deduce that the sequence (pn) converges in L

2 to the unique
Parisi measure p at (t, q). It follows that

f(t, qn) − f(t, q) ⩽Pt(qn, pn) −Pt(q, pn)

= ∫

1

0
⟨qn − q,∇ρPt(λqn + (1 − λ)q, pn)⟩L2dλ.

We thus have

f(t, qn) − f(t,q) − ⟨qn − q,∇ρPt(q, p)⟩L2

⩽ ∫

1

0
⟨qn − q,∇ρPt(λqn + (1 − λ)q, pn) −∇ρPt(q, p)⟩L2dλ.

Now observe that

∫

1

0
⟨qn − q,∇ρPt(λqn + (1 − λ)q, pn) −∇ρPt(q, p)⟩L2dλ

⩽ ∣qn − q∣L2 ∫

1

0
∣∇ρPt(λqn + (1 − λ)q, pn) −∇ρPt(q, p)∣L2dλ.
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Due to (5.1), the integral on the right-hand side vanishes as n→ +∞. As a
result, we get

f(t, qn) − f(t, q) − ⟨qn − q,∇ρPt(q, p)⟩L2 ⩽ o(∣qn − q∣L2).

In addition, we also have,

f(t, qn) − f(t,q) − ⟨qn − q,∇ρPt(q, p)⟩L2

⩾Pt(qn, p) −Pt(q, p) − ⟨qn − q,∇ρPt(q, p)⟩L2 = o(∣qn − q∣L2).

In conclusion,

f(t, qn) = f(t, q) + ⟨qn − q,∇ρPt(q, p)⟩L2 + o(∣qn − q∣L2).

By sequential characterization of the limit, we deduce that f is Fréchet
differentiable at q. □

6. Uniqueness in the critical point representation

In [10], a representation of the limit free energy in terms of the critical
points of a functional has been proven. More precisely, we consider the
functional

(6.1) Jt,q(q
′, p) = ψ(q′) + ⟨p, q − q′⟩L2 + t∫ ξ(p).

We say that (q′, p) ∈ Q2 ×L
2 is a critical point of Jt,q when

(6.2)

⎧⎪⎪
⎨
⎪⎪⎩

q′ = q + t∇ξ(p)
p = ∇ψ(q′)

.

A consequence of the main result [10, Theorem 1.2] is that, for every (t, q) ∈
R+ ×Q2 there exists (q′, p) ∈ Q2∞ that is a critical point of Jt,q and such that

f(t, q) = Jt,q(q
′, p).

Using Theorem 1.3 we can show that this critical point representation for
the free energy is in fact unique as soon as ξ is strictly convex on SD+ .

Corollary 6.1 (Uniqueness in the critical point representation). Assume
that ξ is strictly convex on SD+ and is superlinear on SD+ . Let (t, q) ∈ (0,+∞)×
Q∞,↑, there exists a unique critical point (q′, p) ∈ Q∞ of Jt,q such that

f(t, q) = Jt,q(q
′, p).

Proof. Let (q′, p) ∈ Q2∞ be a critical point of Jt,q. Using q
′ − q = t∇ξ(p), we

get

Jt,q(q
′, p)

(6.1)
= ψ(q + t∇ξ(p)) − t(⟨p,∇ξ(p)⟩L2 − ∫ ξ(p))

(1.8)
= ψ(q + t∇ξ(p)) − t∫ θ(p).

If we further assume that f(t, q) = Jt,q(q
′, p), then we obtain

f(t, q) = ψ(q + t∇ξ(p)) − t∫ θ(p).
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This means that p is a Parisi measure, which by Theorem 1.3 imposes
that p = ∇f(t, q). By the critical point condition (6.2), we also have q′ =
q + t∇ξ(∇f(t, q)), which uniquely characterizes (q′, p). □

Appendix A. Uniqueness of Parisi measures for scalar spins

In this section, we expand on the proof of the uniqueness of Parisi measures
at (t,0) in the case of scalar spins (i.e. D = 1) given in [2]. More precisely,
using the Kantorovich duality from optimal transport, we show that this
proof also yields (still in the case of scalar spins) the uniqueness of Parisi
measures at (t, q) for any q ∈ Q∞.

As written, the proof of the strict concavity of the Parisi functional given
in [2] assumes that P1 is the uniform measure on {−1,1}. We will make
this assumption here as well, but it seems that with a bit more care some
more general reference measures can be considered using the results of [7,
Theorem 4.6].

When D = 1, we can obtain (3.2) (as done in [11, Proposition A.3]) using
an elementary rearrangement argument instead of relying on the Gateaux
differentiability of f as in the proof of Theorem 1.3. In this setting, it
has been observed that at q = 0 the Parisi formula can be recast into a
strictly concave optimization problem and admits a unique maximizer [2].
Using (3.2), this concavity, and the convexity of the optimal transport cost
between probability measures, we show that the uniqueness of Parisi measures
at every q ∈ Q∞. Recall the notion of Parisi measures in Definition 1.2.

Proposition A.1 (Uniqueness of Parisi measures for scalar spins). Assume
that D = 1 and that P1 is the uniform probability measure on {−1,1}. For
every (t, q) ∈ (0,+∞) ×Q∞ there is a unique Parisi measure at (t, q).

Proof. Let P(R+) denote the set of probability measures on R+. We denote
by P2(R+) (respectively, P∞(R+)) the set of probability measures on R+ with
finite second moments (respectively, compact supports). We equip P2(R+)
with W2 the Wasserstein distance defined by

W2(µ
′, µ) = ( inf

π∈Π(µ′,µ)∫
∣x′ − x∣2dπ(x′, x))

1/2

where Π(µ′, µ) denotes the set of probability measures π ∈ P2(R+ ×R+) with
first marginal µ′ and second marginal µ. Let U be a uniform probability
measure on [0,1). We consider the map

G ∶

⎧⎪⎪
⎨
⎪⎪⎩

Q2 → P2(R+)
q ↦ law(q(U))

.

The functionalG is an isometric bijection between the metric spaces (Q2, ∣ ⋅ ∣L2)

and (P2(R+),W2). It has been observed in [2, Theorem 2] that the map
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µ↦ ψ(G−1(µ)) is strictly concave. More precisely, for every µ0, µ1 ∈ P∞(R+)
and λ ∈ [0,1] we have

ψ (G−1(λµ1 + (1 − λ)µ0)) ⩾ λψ (G−1(µ1)) + (1 − λ)ψ (G−1(µ0))

with equality if and only if λ = 0, λ = 1, or µ0 = µ1.

Given µ′, µ ∈ P2(R+), we denote by Tt(µ
′, µ) the cost of the optimal

transport between µ′ and µ with respect to the cost function (x′, x) ↦
tξ∗ (x

′−x
t ), that is,

Tt(µ
′, µ) = inf

π∈Π(µ′,µ)∫
tξ∗ (

x′ − x
t
)dπ(x′, x).

According to [23, Proposition 2.5], for every q′, q ∈ Q2 we have

(A.1) Tt(G(q
′
),G(q)) = ∫

1

0
tξ∗ (

q′(u) − q(u)
t

)du.

In other words, the optimal coupling between measures G(q′) and G(q)
to minimize the aforementioned cost is achieved by the joint (q′(U), q(U))
where U is the uniform random variable over [0,1).

Fix any (t, q) ∈ (0,+∞)×Q∞ and set µ = G(q). The formula for f obtained
in [11, Proposition A.3] (which is simply (3.2) but with a simpler proof) can
be written as

f(t, q) = sup
µ′∈P∞(R+)

{ψ(G−1(µ′)) − Tt(µ′, µ)} .

Step 1. We show that the right-hand side in the previous display is a strictly
concave optimization problem. In particular, this optimization problem
admits a unique maximizer.

The Kantorovich duality theorem (see for example [33, Theorem 5.10])
states that the optimal transport cost Tt(µ

′, µ) admits the following dual
representation

Tt(µ
′, µ) = sup

χ′,χ
{∫ χ′dµ′ − ∫ χdµ} ,

where the supremum is taken over all pairs of functions χ,χ′ ∶ R+ → R
such that χ′(x′) − χ(x) ⩽ (tξ)∗(x′ − x). When the optimal transport cost is
written as in the previous display, it is the supremum of a family of linear
functions in (µ′, µ). In particular, the function (µ′, µ)↦ Tt(µ′, µ) is convex
on P∞(R+) ×P∞(R+). Therefore, since the map µ′ ↦ ψ(G−1(µ′)) is strictly
concave according to [2, Theorem 2], we have that for every µ ∈ P∞(R+), the
map µ′ ↦ ψ(G−1(µ′)) − Tt(µ′, µ) is strictly concave on P∞(R+).
Step 2. We show that there is a unique Parisi measure at (t, q).
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Let p be a Parisi measure at (t, q), let q′ = q + t∇ξ(p), and let µ′ = G(q′).
We have

f(t, q)
D.1.2
= ψ(q + t∇ξ(p)) − t∫ θ(p)

L.3.2
= ψ(q′) − ∫

1

0
tξ∗ (

q′(u) − q(u)
t

)du

(A.1)
= ψ(G−1(µ′)) − Tt(µ′, µ).

So, µ′ is the unique maximizer in the variational formula of Step 1. In
addition, according to Lemma 4.1, we have

p = ∇ξ∗(∇ξ(p)) = ∇ξ∗ (
q′ − q
t
) = ∇ξ∗ (

G−1(µ′) − q
t

) ,

which characterizes p uniquely. □

Finally, we explain the difficulty that arises when one tries to generalize
the arguments of [2] to D > 1. The argument relies on the fact that through
the change of variable q ↦ Law(q(U)), the Parisi formula becomes a strictly
concave optimization problem, and thus it admits only one maximizer. Let
P↑(SD+ ) denote the image of Q by the map p ↦ Law(q(U)). When D = 1,
P↑(SD+ ) is simply the set of probability measures on R+ which is a convex
set (under the linear structure on the set of signed measures). When D > 1,
P↑(SD+ ) is the set of probability measures with totally ordered support [20,
Proposition 5.9] and it is not convex. For example when D = 2, letting

A = (
1 0
0 0
) and B = (

0 0
0 1
) ,

one can check that δA and δB belong to P↑(S2+) but not (δA + δB)/2. This
prevents any easy generalization of the strict concavity argument from [2] to
the case of vector spins (i.e. D > 1).
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